Loading…
Waiting time analysis for MX/G/1 priority queues with/without vacations under random order of service discipline
We study MX/G/1 nonpreemptive and preemptive-resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the La...
Saved in:
Published in: | Journal of applied mathematics and stochastic analysis 2000-01, Vol.13 (4), p.365-392 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 392 |
container_issue | 4 |
container_start_page | 365 |
container_title | Journal of applied mathematics and stochastic analysis |
container_volume | 13 |
creator | Kawasaki, Norikazu Takagi, Hideaki Takahashi, Yutaka Hong, Sung-Jo Hasegawa, Toshiharu |
description | We study MX/G/1 nonpreemptive and preemptive-resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace-Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first-come first-served disciplines extends the one found previously by Takacs and Fuhrmann for non-priority single arrival queues. |
doi_str_mv | 10.1155/S1048953300000320 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_28676534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28676534</sourcerecordid><originalsourceid>FETCH-LOGICAL-p740-d2c4a18437c75d6149a8b75130206ddce617070da7aae0f219cba653e69b58c83</originalsourceid><addsrcrecordid>eNotjktPwzAQhC0EEqXwA7j5xC3Ej_iRI6qgIBVxoBLcqo3tgFEaB9sp6r8nEexhd1YzGn0IXVNyS6kQ5Sslla4F52QezsgJWlCpVcGoUqeTnuxi9s_RRUpfhDBVE7ZAwxv47PsPnP3eYeihOyafcBsifn4v1yXFQ_Qh-nzE36MbXcI_Pn-W8wpjxgcwkH3oEx576yKO0NuwxyHOT2hxcvHgjcPWJ-OHzvfuEp210CV39X-XaPtwv109FpuX9dPqblMMqiKFZaYCqiuujBJW0qoG3ShBOWFEWmucpIooYkEBONIyWpsGpOBO1o3QRvMluvmrHWKYwFPe7ScE13XQuzCmHdNSTfmK_wIrVV5q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28676534</pqid></control><display><type>article</type><title>Waiting time analysis for MX/G/1 priority queues with/without vacations under random order of service discipline</title><source>IngentaConnect Journals</source><creator>Kawasaki, Norikazu ; Takagi, Hideaki ; Takahashi, Yutaka ; Hong, Sung-Jo ; Hasegawa, Toshiharu</creator><creatorcontrib>Kawasaki, Norikazu ; Takagi, Hideaki ; Takahashi, Yutaka ; Hong, Sung-Jo ; Hasegawa, Toshiharu</creatorcontrib><description>We study MX/G/1 nonpreemptive and preemptive-resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace-Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first-come first-served disciplines extends the one found previously by Takacs and Fuhrmann for non-priority single arrival queues.</description><identifier>ISSN: 1048-9533</identifier><identifier>EISSN: 1687-2177</identifier><identifier>DOI: 10.1155/S1048953300000320</identifier><language>eng</language><ispartof>Journal of applied mathematics and stochastic analysis, 2000-01, Vol.13 (4), p.365-392</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kawasaki, Norikazu</creatorcontrib><creatorcontrib>Takagi, Hideaki</creatorcontrib><creatorcontrib>Takahashi, Yutaka</creatorcontrib><creatorcontrib>Hong, Sung-Jo</creatorcontrib><creatorcontrib>Hasegawa, Toshiharu</creatorcontrib><title>Waiting time analysis for MX/G/1 priority queues with/without vacations under random order of service discipline</title><title>Journal of applied mathematics and stochastic analysis</title><description>We study MX/G/1 nonpreemptive and preemptive-resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace-Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first-come first-served disciplines extends the one found previously by Takacs and Fuhrmann for non-priority single arrival queues.</description><issn>1048-9533</issn><issn>1687-2177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNotjktPwzAQhC0EEqXwA7j5xC3Ej_iRI6qgIBVxoBLcqo3tgFEaB9sp6r8nEexhd1YzGn0IXVNyS6kQ5Sslla4F52QezsgJWlCpVcGoUqeTnuxi9s_RRUpfhDBVE7ZAwxv47PsPnP3eYeihOyafcBsifn4v1yXFQ_Qh-nzE36MbXcI_Pn-W8wpjxgcwkH3oEx576yKO0NuwxyHOT2hxcvHgjcPWJ-OHzvfuEp210CV39X-XaPtwv109FpuX9dPqblMMqiKFZaYCqiuujBJW0qoG3ShBOWFEWmucpIooYkEBONIyWpsGpOBO1o3QRvMluvmrHWKYwFPe7ScE13XQuzCmHdNSTfmK_wIrVV5q</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Kawasaki, Norikazu</creator><creator>Takagi, Hideaki</creator><creator>Takahashi, Yutaka</creator><creator>Hong, Sung-Jo</creator><creator>Hasegawa, Toshiharu</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000101</creationdate><title>Waiting time analysis for MX/G/1 priority queues with/without vacations under random order of service discipline</title><author>Kawasaki, Norikazu ; Takagi, Hideaki ; Takahashi, Yutaka ; Hong, Sung-Jo ; Hasegawa, Toshiharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p740-d2c4a18437c75d6149a8b75130206ddce617070da7aae0f219cba653e69b58c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kawasaki, Norikazu</creatorcontrib><creatorcontrib>Takagi, Hideaki</creatorcontrib><creatorcontrib>Takahashi, Yutaka</creatorcontrib><creatorcontrib>Hong, Sung-Jo</creatorcontrib><creatorcontrib>Hasegawa, Toshiharu</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied mathematics and stochastic analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawasaki, Norikazu</au><au>Takagi, Hideaki</au><au>Takahashi, Yutaka</au><au>Hong, Sung-Jo</au><au>Hasegawa, Toshiharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waiting time analysis for MX/G/1 priority queues with/without vacations under random order of service discipline</atitle><jtitle>Journal of applied mathematics and stochastic analysis</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>13</volume><issue>4</issue><spage>365</spage><epage>392</epage><pages>365-392</pages><issn>1048-9533</issn><eissn>1687-2177</eissn><abstract>We study MX/G/1 nonpreemptive and preemptive-resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace-Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first-come first-served disciplines extends the one found previously by Takacs and Fuhrmann for non-priority single arrival queues.</abstract><doi>10.1155/S1048953300000320</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1048-9533 |
ispartof | Journal of applied mathematics and stochastic analysis, 2000-01, Vol.13 (4), p.365-392 |
issn | 1048-9533 1687-2177 |
language | eng |
recordid | cdi_proquest_miscellaneous_28676534 |
source | IngentaConnect Journals |
title | Waiting time analysis for MX/G/1 priority queues with/without vacations under random order of service discipline |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waiting%20time%20analysis%20for%20MX/G/1%20priority%20queues%20with/without%20vacations%20under%20random%20order%20of%20service%20discipline&rft.jtitle=Journal%20of%20applied%20mathematics%20and%20stochastic%20analysis&rft.au=Kawasaki,%20Norikazu&rft.date=2000-01-01&rft.volume=13&rft.issue=4&rft.spage=365&rft.epage=392&rft.pages=365-392&rft.issn=1048-9533&rft.eissn=1687-2177&rft_id=info:doi/10.1155/S1048953300000320&rft_dat=%3Cproquest%3E28676534%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p740-d2c4a18437c75d6149a8b75130206ddce617070da7aae0f219cba653e69b58c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28676534&rft_id=info:pmid/&rfr_iscdi=true |