Loading…

Waiting time analysis for MX/G/1 priority queues with/without vacations under random order of service discipline

We study MX/G/1 nonpreemptive and preemptive-resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the La...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied mathematics and stochastic analysis 2000-01, Vol.13 (4), p.365-392
Main Authors: Kawasaki, Norikazu, Takagi, Hideaki, Takahashi, Yutaka, Hong, Sung-Jo, Hasegawa, Toshiharu
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 392
container_issue 4
container_start_page 365
container_title Journal of applied mathematics and stochastic analysis
container_volume 13
creator Kawasaki, Norikazu
Takagi, Hideaki
Takahashi, Yutaka
Hong, Sung-Jo
Hasegawa, Toshiharu
description We study MX/G/1 nonpreemptive and preemptive-resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace-Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first-come first-served disciplines extends the one found previously by Takacs and Fuhrmann for non-priority single arrival queues.
doi_str_mv 10.1155/S1048953300000320
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_28676534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28676534</sourcerecordid><originalsourceid>FETCH-LOGICAL-p740-d2c4a18437c75d6149a8b75130206ddce617070da7aae0f219cba653e69b58c83</originalsourceid><addsrcrecordid>eNotjktPwzAQhC0EEqXwA7j5xC3Ej_iRI6qgIBVxoBLcqo3tgFEaB9sp6r8nEexhd1YzGn0IXVNyS6kQ5Sslla4F52QezsgJWlCpVcGoUqeTnuxi9s_RRUpfhDBVE7ZAwxv47PsPnP3eYeihOyafcBsifn4v1yXFQ_Qh-nzE36MbXcI_Pn-W8wpjxgcwkH3oEx576yKO0NuwxyHOT2hxcvHgjcPWJ-OHzvfuEp210CV39X-XaPtwv109FpuX9dPqblMMqiKFZaYCqiuujBJW0qoG3ShBOWFEWmucpIooYkEBONIyWpsGpOBO1o3QRvMluvmrHWKYwFPe7ScE13XQuzCmHdNSTfmK_wIrVV5q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28676534</pqid></control><display><type>article</type><title>Waiting time analysis for MX/G/1 priority queues with/without vacations under random order of service discipline</title><source>IngentaConnect Journals</source><creator>Kawasaki, Norikazu ; Takagi, Hideaki ; Takahashi, Yutaka ; Hong, Sung-Jo ; Hasegawa, Toshiharu</creator><creatorcontrib>Kawasaki, Norikazu ; Takagi, Hideaki ; Takahashi, Yutaka ; Hong, Sung-Jo ; Hasegawa, Toshiharu</creatorcontrib><description>We study MX/G/1 nonpreemptive and preemptive-resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace-Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first-come first-served disciplines extends the one found previously by Takacs and Fuhrmann for non-priority single arrival queues.</description><identifier>ISSN: 1048-9533</identifier><identifier>EISSN: 1687-2177</identifier><identifier>DOI: 10.1155/S1048953300000320</identifier><language>eng</language><ispartof>Journal of applied mathematics and stochastic analysis, 2000-01, Vol.13 (4), p.365-392</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kawasaki, Norikazu</creatorcontrib><creatorcontrib>Takagi, Hideaki</creatorcontrib><creatorcontrib>Takahashi, Yutaka</creatorcontrib><creatorcontrib>Hong, Sung-Jo</creatorcontrib><creatorcontrib>Hasegawa, Toshiharu</creatorcontrib><title>Waiting time analysis for MX/G/1 priority queues with/without vacations under random order of service discipline</title><title>Journal of applied mathematics and stochastic analysis</title><description>We study MX/G/1 nonpreemptive and preemptive-resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace-Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first-come first-served disciplines extends the one found previously by Takacs and Fuhrmann for non-priority single arrival queues.</description><issn>1048-9533</issn><issn>1687-2177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNotjktPwzAQhC0EEqXwA7j5xC3Ej_iRI6qgIBVxoBLcqo3tgFEaB9sp6r8nEexhd1YzGn0IXVNyS6kQ5Sslla4F52QezsgJWlCpVcGoUqeTnuxi9s_RRUpfhDBVE7ZAwxv47PsPnP3eYeihOyafcBsifn4v1yXFQ_Qh-nzE36MbXcI_Pn-W8wpjxgcwkH3oEx576yKO0NuwxyHOT2hxcvHgjcPWJ-OHzvfuEp210CV39X-XaPtwv109FpuX9dPqblMMqiKFZaYCqiuujBJW0qoG3ShBOWFEWmucpIooYkEBONIyWpsGpOBO1o3QRvMluvmrHWKYwFPe7ScE13XQuzCmHdNSTfmK_wIrVV5q</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Kawasaki, Norikazu</creator><creator>Takagi, Hideaki</creator><creator>Takahashi, Yutaka</creator><creator>Hong, Sung-Jo</creator><creator>Hasegawa, Toshiharu</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000101</creationdate><title>Waiting time analysis for MX/G/1 priority queues with/without vacations under random order of service discipline</title><author>Kawasaki, Norikazu ; Takagi, Hideaki ; Takahashi, Yutaka ; Hong, Sung-Jo ; Hasegawa, Toshiharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p740-d2c4a18437c75d6149a8b75130206ddce617070da7aae0f219cba653e69b58c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kawasaki, Norikazu</creatorcontrib><creatorcontrib>Takagi, Hideaki</creatorcontrib><creatorcontrib>Takahashi, Yutaka</creatorcontrib><creatorcontrib>Hong, Sung-Jo</creatorcontrib><creatorcontrib>Hasegawa, Toshiharu</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied mathematics and stochastic analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawasaki, Norikazu</au><au>Takagi, Hideaki</au><au>Takahashi, Yutaka</au><au>Hong, Sung-Jo</au><au>Hasegawa, Toshiharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waiting time analysis for MX/G/1 priority queues with/without vacations under random order of service discipline</atitle><jtitle>Journal of applied mathematics and stochastic analysis</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>13</volume><issue>4</issue><spage>365</spage><epage>392</epage><pages>365-392</pages><issn>1048-9533</issn><eissn>1687-2177</eissn><abstract>We study MX/G/1 nonpreemptive and preemptive-resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace-Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first-come first-served disciplines extends the one found previously by Takacs and Fuhrmann for non-priority single arrival queues.</abstract><doi>10.1155/S1048953300000320</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1048-9533
ispartof Journal of applied mathematics and stochastic analysis, 2000-01, Vol.13 (4), p.365-392
issn 1048-9533
1687-2177
language eng
recordid cdi_proquest_miscellaneous_28676534
source IngentaConnect Journals
title Waiting time analysis for MX/G/1 priority queues with/without vacations under random order of service discipline
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waiting%20time%20analysis%20for%20MX/G/1%20priority%20queues%20with/without%20vacations%20under%20random%20order%20of%20service%20discipline&rft.jtitle=Journal%20of%20applied%20mathematics%20and%20stochastic%20analysis&rft.au=Kawasaki,%20Norikazu&rft.date=2000-01-01&rft.volume=13&rft.issue=4&rft.spage=365&rft.epage=392&rft.pages=365-392&rft.issn=1048-9533&rft.eissn=1687-2177&rft_id=info:doi/10.1155/S1048953300000320&rft_dat=%3Cproquest%3E28676534%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p740-d2c4a18437c75d6149a8b75130206ddce617070da7aae0f219cba653e69b58c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28676534&rft_id=info:pmid/&rfr_iscdi=true