Loading…
Decoding the building blocks of cellular processes from single-cell transcriptomics data
Most features of a cell are determined by gene programs — sets of co-expressed genes that execute a specific function. By incorporating existing knowledge about gene programs and cell types, the Spectra factor analysis method improves how we decode single-cell transcriptomic data and offers insights...
Saved in:
Published in: | Nature biotechnology 2024-07, Vol.42 (7), p.1034-1035 |
---|---|
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-6f02b7c38dc4444a3af32ad39ba81f23e5af44d0d377830217bf55c4235250253 |
container_end_page | 1035 |
container_issue | 7 |
container_start_page | 1034 |
container_title | Nature biotechnology |
container_volume | 42 |
description | Most features of a cell are determined by gene programs — sets of co-expressed genes that execute a specific function. By incorporating existing knowledge about gene programs and cell types, the Spectra factor analysis method improves how we decode single-cell transcriptomic data and offers insights into challenging tumor immune contexts. |
doi_str_mv | 10.1038/s41587-023-01967-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2868120242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2868120242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-6f02b7c38dc4444a3af32ad39ba81f23e5af44d0d377830217bf55c4235250253</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EoqXwBxiQJRaWgB-xnY6oPKVKLCCxWY5jl5QkLr7JwL_HoTwkBrzY1vnuuUcHoWNKzinhxQXkVBQqI4xnhM6lyuQOmlKRy4zKudxNbzLKVMgJOgBYE0JkLuU-mnCluGBSTdHzlbOhqrsV7l8cLoe6-fyUTbCvgIPH1jXN0JiINzFYB-AA-xhaDAlrXDbKuI-mAxvrTR_a2gKuTG8O0Z43Dbijr3uGnm6uHxd32fLh9n5xucwsZ7LPpCesVJYXlc3TMdx4zkzF56UpqGfcCePzvCJVilxwwqgqvRA2Zym_IEzwGTrb-qZ8b4ODXrc1jKlM58IAmhWyoIywNDFDp3_QdRhil9JpTgqaKzWnMlFsS9kYAKLzehPr1sR3TYkee9fb3nXqXX_2rsehky_roWxd9TPyXXQC-BaAJHUrF393_2P7AYZcjT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081477916</pqid></control><display><type>article</type><title>Decoding the building blocks of cellular processes from single-cell transcriptomics data</title><source>Nature</source><description>Most features of a cell are determined by gene programs — sets of co-expressed genes that execute a specific function. By incorporating existing knowledge about gene programs and cell types, the Spectra factor analysis method improves how we decode single-cell transcriptomic data and offers insights into challenging tumor immune contexts.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-023-01967-6</identifier><identifier>PMID: 37735267</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/129/2043 ; 631/114/1305 ; 631/114/2114 ; 631/114/2397 ; Agriculture ; Bioinformatics ; Biology ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Breast cancer ; Computational Biology - methods ; Cytotoxicity ; Datasets ; Decoding ; Discriminant analysis ; DNA methylation ; Factor analysis ; Gene expression ; Gene Expression Profiling - methods ; Humans ; Immunology ; Immunotherapy ; Life Sciences ; Lymphocytes ; Methods ; Patients ; Research Briefing ; Single-Cell Analysis - methods ; Transcriptome - genetics ; Transcriptomics ; Tumors</subject><ispartof>Nature biotechnology, 2024-07, Vol.42 (7), p.1034-1035</ispartof><rights>Springer Nature America, Inc. 2023</rights><rights>Springer Nature America, Inc. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-6f02b7c38dc4444a3af32ad39ba81f23e5af44d0d377830217bf55c4235250253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37735267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><title>Decoding the building blocks of cellular processes from single-cell transcriptomics data</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Most features of a cell are determined by gene programs — sets of co-expressed genes that execute a specific function. By incorporating existing knowledge about gene programs and cell types, the Spectra factor analysis method improves how we decode single-cell transcriptomic data and offers insights into challenging tumor immune contexts.</description><subject>631/114/129/2043</subject><subject>631/114/1305</subject><subject>631/114/2114</subject><subject>631/114/2397</subject><subject>Agriculture</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Breast cancer</subject><subject>Computational Biology - methods</subject><subject>Cytotoxicity</subject><subject>Datasets</subject><subject>Decoding</subject><subject>Discriminant analysis</subject><subject>DNA methylation</subject><subject>Factor analysis</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Humans</subject><subject>Immunology</subject><subject>Immunotherapy</subject><subject>Life Sciences</subject><subject>Lymphocytes</subject><subject>Methods</subject><subject>Patients</subject><subject>Research Briefing</subject><subject>Single-Cell Analysis - methods</subject><subject>Transcriptome - genetics</subject><subject>Transcriptomics</subject><subject>Tumors</subject><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EoqXwBxiQJRaWgB-xnY6oPKVKLCCxWY5jl5QkLr7JwL_HoTwkBrzY1vnuuUcHoWNKzinhxQXkVBQqI4xnhM6lyuQOmlKRy4zKudxNbzLKVMgJOgBYE0JkLuU-mnCluGBSTdHzlbOhqrsV7l8cLoe6-fyUTbCvgIPH1jXN0JiINzFYB-AA-xhaDAlrXDbKuI-mAxvrTR_a2gKuTG8O0Z43Dbijr3uGnm6uHxd32fLh9n5xucwsZ7LPpCesVJYXlc3TMdx4zkzF56UpqGfcCePzvCJVilxwwqgqvRA2Zym_IEzwGTrb-qZ8b4ODXrc1jKlM58IAmhWyoIywNDFDp3_QdRhil9JpTgqaKzWnMlFsS9kYAKLzehPr1sR3TYkee9fb3nXqXX_2rsehky_roWxd9TPyXXQC-BaAJHUrF393_2P7AYZcjT4</recordid><startdate>20240701</startdate><enddate>20240701</enddate><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20240701</creationdate><title>Decoding the building blocks of cellular processes from single-cell transcriptomics data</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-6f02b7c38dc4444a3af32ad39ba81f23e5af44d0d377830217bf55c4235250253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/114/129/2043</topic><topic>631/114/1305</topic><topic>631/114/2114</topic><topic>631/114/2397</topic><topic>Agriculture</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Breast cancer</topic><topic>Computational Biology - methods</topic><topic>Cytotoxicity</topic><topic>Datasets</topic><topic>Decoding</topic><topic>Discriminant analysis</topic><topic>DNA methylation</topic><topic>Factor analysis</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Humans</topic><topic>Immunology</topic><topic>Immunotherapy</topic><topic>Life Sciences</topic><topic>Lymphocytes</topic><topic>Methods</topic><topic>Patients</topic><topic>Research Briefing</topic><topic>Single-Cell Analysis - methods</topic><topic>Transcriptome - genetics</topic><topic>Transcriptomics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding the building blocks of cellular processes from single-cell transcriptomics data</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>42</volume><issue>7</issue><spage>1034</spage><epage>1035</epage><pages>1034-1035</pages><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>Most features of a cell are determined by gene programs — sets of co-expressed genes that execute a specific function. By incorporating existing knowledge about gene programs and cell types, the Spectra factor analysis method improves how we decode single-cell transcriptomic data and offers insights into challenging tumor immune contexts.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37735267</pmid><doi>10.1038/s41587-023-01967-6</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2024-07, Vol.42 (7), p.1034-1035 |
issn | 1087-0156 1546-1696 1546-1696 |
language | eng |
recordid | cdi_proquest_miscellaneous_2868120242 |
source | Nature |
subjects | 631/114/129/2043 631/114/1305 631/114/2114 631/114/2397 Agriculture Bioinformatics Biology Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Breast cancer Computational Biology - methods Cytotoxicity Datasets Decoding Discriminant analysis DNA methylation Factor analysis Gene expression Gene Expression Profiling - methods Humans Immunology Immunotherapy Life Sciences Lymphocytes Methods Patients Research Briefing Single-Cell Analysis - methods Transcriptome - genetics Transcriptomics Tumors |
title | Decoding the building blocks of cellular processes from single-cell transcriptomics data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20the%20building%20blocks%20of%20cellular%20processes%20from%20single-cell%20transcriptomics%20data&rft.jtitle=Nature%20biotechnology&rft.date=2024-07-01&rft.volume=42&rft.issue=7&rft.spage=1034&rft.epage=1035&rft.pages=1034-1035&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-023-01967-6&rft_dat=%3Cproquest_cross%3E2868120242%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-6f02b7c38dc4444a3af32ad39ba81f23e5af44d0d377830217bf55c4235250253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3081477916&rft_id=info:pmid/37735267&rfr_iscdi=true |