Loading…
Review on design strategies and applications of flexible cellulose‑carbon nanotube functional composites
Combining the excellent biocompatibility and mechanical flexibility of cellulose with the outstanding electrical, mechanical, optical and stability properties of carbon nanotubes (CNTs), cellulose-CNT composites have been extensively studied and applied to many flexible functional materials. In this...
Saved in:
Published in: | Carbohydrate polymers 2023-12, Vol.321, p.121306-121306, Article 121306 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Combining the excellent biocompatibility and mechanical flexibility of cellulose with the outstanding electrical, mechanical, optical and stability properties of carbon nanotubes (CNTs), cellulose-CNT composites have been extensively studied and applied to many flexible functional materials. In this review, we present advances in structural design strategies and various applications of cellulose-CNT composites. Firstly, the structural characteristics and corresponding treatments of cellulose and CNTs are analyzed, as are the potential interactions between the two to facilitate the formation of cellulose-CNT composites. Then, the design strategies and processing techniques of cellulose-CNT composites are discussed from the perspectives of cellulose fibers at the macroscopic scale (natural cotton, hemp, and other fibers; recycled cellulose fibers); nanocellulose at the micron scale (nanofibers, nanocrystals, etc.); and macromolecular chains at the molecular scale (cellulose solutions). Further, the applications of cellulose-CNT composites in various fields, such as flexible energy harvesting and storage devices, strain and humidity sensors, electrothermal devices, magnetic shielding, and photothermal conversion, are introduced. This review will help readers understand the design strategies of cellulose-CNT composites and develop potential high-performance applications.
[Display omitted] |
---|---|
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2023.121306 |