Loading…
Reactivity Prediction of Cu-Catalyzed Halogen Atom Transfer Reactions Using Data-Driven Techniques
In catalysis, linear free energy relationships (LFERs) are commonly used to identify reaction descriptors that enable the prediction of outcomes and the design of more effective catalysts. Herein, LFERs are established for the reductive cleavage of the C(sp3)–X bond in alkyl halides (RX) by Cu comp...
Saved in:
Published in: | Journal of the American Chemical Society 2023-10, Vol.145 (39), p.21587-21599 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a301t-a7ca9ffc84284ba17fe151bc18a6482fef8925dbafda3212aebed7fdc8bdc3d73 |
---|---|
cites | cdi_FETCH-LOGICAL-a301t-a7ca9ffc84284ba17fe151bc18a6482fef8925dbafda3212aebed7fdc8bdc3d73 |
container_end_page | 21599 |
container_issue | 39 |
container_start_page | 21587 |
container_title | Journal of the American Chemical Society |
container_volume | 145 |
creator | Lorandi, Francesca Fantin, Marco Jafari, Hossein Gorczynski, Adam Szczepaniak, Grzegorz Dadashi-Silab, Sajjad Isse, Abdirisak A. Matyjaszewski, Krzysztof |
description | In catalysis, linear free energy relationships (LFERs) are commonly used to identify reaction descriptors that enable the prediction of outcomes and the design of more effective catalysts. Herein, LFERs are established for the reductive cleavage of the C(sp3)–X bond in alkyl halides (RX) by Cu complexes. This reaction represents the activation step in atom transfer radical polymerization and atom transfer radical addition/cyclization. The values of the activation rate constant, k act, for 107 Cu complex/RX couples in 5 different solvents spanning over 13 orders of magnitude were effectively interpolated by the equation: log k act = sC (I + C + S), where I, C, and S are, respectively, the initiator, catalyst, and solvent parameters, and sC is the catalyst-specific sensitivity parameter. Furthermore, each of these parameters was correlated to relevant descriptors, which included the bond dissociation free energy of RX and its Tolman cone angle θ, the electron affinity of X, the radical stabilization energy, the standard reduction potential of the Cu complex, the polarizability parameter π* of the solvent, and the distortion energy of the complex in its transition state. This set of descriptors establishes the fundamental properties of Cu complexes and RX that determine their reactivity and that need to be considered when designing novel systems for atom transfer radical reactions. Finally, a multivariate linear regression (MLR) approach was adopted to develop an objective model that surpassed the predictive capability of the LFER equation. Thus, the MLR model was employed to predict k act values for >2000 Cu complex/RX pairs. |
doi_str_mv | 10.1021/jacs.3c07711 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2868125418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2868125418</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-a7ca9ffc84284ba17fe151bc18a6482fef8925dbafda3212aebed7fdc8bdc3d73</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWKs3P0COHtyayf5Lj2WrVigo0p6X2WxSU7ZJTXYL9dO7SwtePA1v-M2bmUfIPbAJMA5PW5RhEkuW5wAXZAQpZ1EKPLskI8YYj3KRxdfkJoRtLxMuYESqT4WyNQfTHumHV7XphbPUaVp0UYEtNscfVdMFNm6jLJ21bkdXHm3QytPTrLOBroOxGzrv-WjuzaEnV0p-WfPdqXBLrjQ2Qd2d65isX55XxSJavr--FbNlhDGDNsJc4lRrKfrDkgoh1wpSqCQIzBLBtdJiytO6Ql1jzIGjqlSd61qKqpZxncdj8nDy3Xs37G3LnQlSNQ1a5bpQcpEJ4GkCokcfT6j0LgSvdLn3Zof-WAIrhyjLIcryHOWf89Dcus7b_o__0V-FRnbF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2868125418</pqid></control><display><type>article</type><title>Reactivity Prediction of Cu-Catalyzed Halogen Atom Transfer Reactions Using Data-Driven Techniques</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Lorandi, Francesca ; Fantin, Marco ; Jafari, Hossein ; Gorczynski, Adam ; Szczepaniak, Grzegorz ; Dadashi-Silab, Sajjad ; Isse, Abdirisak A. ; Matyjaszewski, Krzysztof</creator><creatorcontrib>Lorandi, Francesca ; Fantin, Marco ; Jafari, Hossein ; Gorczynski, Adam ; Szczepaniak, Grzegorz ; Dadashi-Silab, Sajjad ; Isse, Abdirisak A. ; Matyjaszewski, Krzysztof</creatorcontrib><description>In catalysis, linear free energy relationships (LFERs) are commonly used to identify reaction descriptors that enable the prediction of outcomes and the design of more effective catalysts. Herein, LFERs are established for the reductive cleavage of the C(sp3)–X bond in alkyl halides (RX) by Cu complexes. This reaction represents the activation step in atom transfer radical polymerization and atom transfer radical addition/cyclization. The values of the activation rate constant, k act, for 107 Cu complex/RX couples in 5 different solvents spanning over 13 orders of magnitude were effectively interpolated by the equation: log k act = sC (I + C + S), where I, C, and S are, respectively, the initiator, catalyst, and solvent parameters, and sC is the catalyst-specific sensitivity parameter. Furthermore, each of these parameters was correlated to relevant descriptors, which included the bond dissociation free energy of RX and its Tolman cone angle θ, the electron affinity of X, the radical stabilization energy, the standard reduction potential of the Cu complex, the polarizability parameter π* of the solvent, and the distortion energy of the complex in its transition state. This set of descriptors establishes the fundamental properties of Cu complexes and RX that determine their reactivity and that need to be considered when designing novel systems for atom transfer radical reactions. Finally, a multivariate linear regression (MLR) approach was adopted to develop an objective model that surpassed the predictive capability of the LFER equation. Thus, the MLR model was employed to predict k act values for >2000 Cu complex/RX pairs.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c07711</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2023-10, Vol.145 (39), p.21587-21599</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-a7ca9ffc84284ba17fe151bc18a6482fef8925dbafda3212aebed7fdc8bdc3d73</citedby><cites>FETCH-LOGICAL-a301t-a7ca9ffc84284ba17fe151bc18a6482fef8925dbafda3212aebed7fdc8bdc3d73</cites><orcidid>0000-0003-0966-1983 ; 0000-0002-4285-5846 ; 0000-0001-9581-2076 ; 0000-0001-5253-8468 ; 0000-0003-1960-3402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lorandi, Francesca</creatorcontrib><creatorcontrib>Fantin, Marco</creatorcontrib><creatorcontrib>Jafari, Hossein</creatorcontrib><creatorcontrib>Gorczynski, Adam</creatorcontrib><creatorcontrib>Szczepaniak, Grzegorz</creatorcontrib><creatorcontrib>Dadashi-Silab, Sajjad</creatorcontrib><creatorcontrib>Isse, Abdirisak A.</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><title>Reactivity Prediction of Cu-Catalyzed Halogen Atom Transfer Reactions Using Data-Driven Techniques</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>In catalysis, linear free energy relationships (LFERs) are commonly used to identify reaction descriptors that enable the prediction of outcomes and the design of more effective catalysts. Herein, LFERs are established for the reductive cleavage of the C(sp3)–X bond in alkyl halides (RX) by Cu complexes. This reaction represents the activation step in atom transfer radical polymerization and atom transfer radical addition/cyclization. The values of the activation rate constant, k act, for 107 Cu complex/RX couples in 5 different solvents spanning over 13 orders of magnitude were effectively interpolated by the equation: log k act = sC (I + C + S), where I, C, and S are, respectively, the initiator, catalyst, and solvent parameters, and sC is the catalyst-specific sensitivity parameter. Furthermore, each of these parameters was correlated to relevant descriptors, which included the bond dissociation free energy of RX and its Tolman cone angle θ, the electron affinity of X, the radical stabilization energy, the standard reduction potential of the Cu complex, the polarizability parameter π* of the solvent, and the distortion energy of the complex in its transition state. This set of descriptors establishes the fundamental properties of Cu complexes and RX that determine their reactivity and that need to be considered when designing novel systems for atom transfer radical reactions. Finally, a multivariate linear regression (MLR) approach was adopted to develop an objective model that surpassed the predictive capability of the LFER equation. Thus, the MLR model was employed to predict k act values for >2000 Cu complex/RX pairs.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkE9LAzEQxYMoWKs3P0COHtyayf5Lj2WrVigo0p6X2WxSU7ZJTXYL9dO7SwtePA1v-M2bmUfIPbAJMA5PW5RhEkuW5wAXZAQpZ1EKPLskI8YYj3KRxdfkJoRtLxMuYESqT4WyNQfTHumHV7XphbPUaVp0UYEtNscfVdMFNm6jLJ21bkdXHm3QytPTrLOBroOxGzrv-WjuzaEnV0p-WfPdqXBLrjQ2Qd2d65isX55XxSJavr--FbNlhDGDNsJc4lRrKfrDkgoh1wpSqCQIzBLBtdJiytO6Ql1jzIGjqlSd61qKqpZxncdj8nDy3Xs37G3LnQlSNQ1a5bpQcpEJ4GkCokcfT6j0LgSvdLn3Zof-WAIrhyjLIcryHOWf89Dcus7b_o__0V-FRnbF</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Lorandi, Francesca</creator><creator>Fantin, Marco</creator><creator>Jafari, Hossein</creator><creator>Gorczynski, Adam</creator><creator>Szczepaniak, Grzegorz</creator><creator>Dadashi-Silab, Sajjad</creator><creator>Isse, Abdirisak A.</creator><creator>Matyjaszewski, Krzysztof</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0966-1983</orcidid><orcidid>https://orcid.org/0000-0002-4285-5846</orcidid><orcidid>https://orcid.org/0000-0001-9581-2076</orcidid><orcidid>https://orcid.org/0000-0001-5253-8468</orcidid><orcidid>https://orcid.org/0000-0003-1960-3402</orcidid></search><sort><creationdate>20231004</creationdate><title>Reactivity Prediction of Cu-Catalyzed Halogen Atom Transfer Reactions Using Data-Driven Techniques</title><author>Lorandi, Francesca ; Fantin, Marco ; Jafari, Hossein ; Gorczynski, Adam ; Szczepaniak, Grzegorz ; Dadashi-Silab, Sajjad ; Isse, Abdirisak A. ; Matyjaszewski, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-a7ca9ffc84284ba17fe151bc18a6482fef8925dbafda3212aebed7fdc8bdc3d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lorandi, Francesca</creatorcontrib><creatorcontrib>Fantin, Marco</creatorcontrib><creatorcontrib>Jafari, Hossein</creatorcontrib><creatorcontrib>Gorczynski, Adam</creatorcontrib><creatorcontrib>Szczepaniak, Grzegorz</creatorcontrib><creatorcontrib>Dadashi-Silab, Sajjad</creatorcontrib><creatorcontrib>Isse, Abdirisak A.</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lorandi, Francesca</au><au>Fantin, Marco</au><au>Jafari, Hossein</au><au>Gorczynski, Adam</au><au>Szczepaniak, Grzegorz</au><au>Dadashi-Silab, Sajjad</au><au>Isse, Abdirisak A.</au><au>Matyjaszewski, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactivity Prediction of Cu-Catalyzed Halogen Atom Transfer Reactions Using Data-Driven Techniques</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-10-04</date><risdate>2023</risdate><volume>145</volume><issue>39</issue><spage>21587</spage><epage>21599</epage><pages>21587-21599</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>In catalysis, linear free energy relationships (LFERs) are commonly used to identify reaction descriptors that enable the prediction of outcomes and the design of more effective catalysts. Herein, LFERs are established for the reductive cleavage of the C(sp3)–X bond in alkyl halides (RX) by Cu complexes. This reaction represents the activation step in atom transfer radical polymerization and atom transfer radical addition/cyclization. The values of the activation rate constant, k act, for 107 Cu complex/RX couples in 5 different solvents spanning over 13 orders of magnitude were effectively interpolated by the equation: log k act = sC (I + C + S), where I, C, and S are, respectively, the initiator, catalyst, and solvent parameters, and sC is the catalyst-specific sensitivity parameter. Furthermore, each of these parameters was correlated to relevant descriptors, which included the bond dissociation free energy of RX and its Tolman cone angle θ, the electron affinity of X, the radical stabilization energy, the standard reduction potential of the Cu complex, the polarizability parameter π* of the solvent, and the distortion energy of the complex in its transition state. This set of descriptors establishes the fundamental properties of Cu complexes and RX that determine their reactivity and that need to be considered when designing novel systems for atom transfer radical reactions. Finally, a multivariate linear regression (MLR) approach was adopted to develop an objective model that surpassed the predictive capability of the LFER equation. Thus, the MLR model was employed to predict k act values for >2000 Cu complex/RX pairs.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.3c07711</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0966-1983</orcidid><orcidid>https://orcid.org/0000-0002-4285-5846</orcidid><orcidid>https://orcid.org/0000-0001-9581-2076</orcidid><orcidid>https://orcid.org/0000-0001-5253-8468</orcidid><orcidid>https://orcid.org/0000-0003-1960-3402</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2023-10, Vol.145 (39), p.21587-21599 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_2868125418 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Reactivity Prediction of Cu-Catalyzed Halogen Atom Transfer Reactions Using Data-Driven Techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactivity%20Prediction%20of%20Cu-Catalyzed%20Halogen%20Atom%20Transfer%20Reactions%20Using%20Data-Driven%20Techniques&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lorandi,%20Francesca&rft.date=2023-10-04&rft.volume=145&rft.issue=39&rft.spage=21587&rft.epage=21599&rft.pages=21587-21599&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c07711&rft_dat=%3Cproquest_cross%3E2868125418%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a301t-a7ca9ffc84284ba17fe151bc18a6482fef8925dbafda3212aebed7fdc8bdc3d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2868125418&rft_id=info:pmid/&rfr_iscdi=true |