Loading…

Reactivity Prediction of Cu-Catalyzed Halogen Atom Transfer Reactions Using Data-Driven Techniques

In catalysis, linear free energy relationships (LFERs) are commonly used to identify reaction descriptors that enable the prediction of outcomes and the design of more effective catalysts. Herein, LFERs are established for the reductive cleavage of the C­(sp3)–X bond in alkyl halides (RX) by Cu comp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2023-10, Vol.145 (39), p.21587-21599
Main Authors: Lorandi, Francesca, Fantin, Marco, Jafari, Hossein, Gorczynski, Adam, Szczepaniak, Grzegorz, Dadashi-Silab, Sajjad, Isse, Abdirisak A., Matyjaszewski, Krzysztof
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a301t-a7ca9ffc84284ba17fe151bc18a6482fef8925dbafda3212aebed7fdc8bdc3d73
cites cdi_FETCH-LOGICAL-a301t-a7ca9ffc84284ba17fe151bc18a6482fef8925dbafda3212aebed7fdc8bdc3d73
container_end_page 21599
container_issue 39
container_start_page 21587
container_title Journal of the American Chemical Society
container_volume 145
creator Lorandi, Francesca
Fantin, Marco
Jafari, Hossein
Gorczynski, Adam
Szczepaniak, Grzegorz
Dadashi-Silab, Sajjad
Isse, Abdirisak A.
Matyjaszewski, Krzysztof
description In catalysis, linear free energy relationships (LFERs) are commonly used to identify reaction descriptors that enable the prediction of outcomes and the design of more effective catalysts. Herein, LFERs are established for the reductive cleavage of the C­(sp3)–X bond in alkyl halides (RX) by Cu complexes. This reaction represents the activation step in atom transfer radical polymerization and atom transfer radical addition/cyclization. The values of the activation rate constant, k act, for 107 Cu complex/RX couples in 5 different solvents spanning over 13 orders of magnitude were effectively interpolated by the equation: log k act = sC (I + C + S), where I, C, and S are, respectively, the initiator, catalyst, and solvent parameters, and sC is the catalyst-specific sensitivity parameter. Furthermore, each of these parameters was correlated to relevant descriptors, which included the bond dissociation free energy of RX and its Tolman cone angle θ, the electron affinity of X, the radical stabilization energy, the standard reduction potential of the Cu complex, the polarizability parameter π* of the solvent, and the distortion energy of the complex in its transition state. This set of descriptors establishes the fundamental properties of Cu complexes and RX that determine their reactivity and that need to be considered when designing novel systems for atom transfer radical reactions. Finally, a multivariate linear regression (MLR) approach was adopted to develop an objective model that surpassed the predictive capability of the LFER equation. Thus, the MLR model was employed to predict k act values for >2000 Cu complex/RX pairs.
doi_str_mv 10.1021/jacs.3c07711
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2868125418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2868125418</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-a7ca9ffc84284ba17fe151bc18a6482fef8925dbafda3212aebed7fdc8bdc3d73</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWKs3P0COHtyayf5Lj2WrVigo0p6X2WxSU7ZJTXYL9dO7SwtePA1v-M2bmUfIPbAJMA5PW5RhEkuW5wAXZAQpZ1EKPLskI8YYj3KRxdfkJoRtLxMuYESqT4WyNQfTHumHV7XphbPUaVp0UYEtNscfVdMFNm6jLJ21bkdXHm3QytPTrLOBroOxGzrv-WjuzaEnV0p-WfPdqXBLrjQ2Qd2d65isX55XxSJavr--FbNlhDGDNsJc4lRrKfrDkgoh1wpSqCQIzBLBtdJiytO6Ql1jzIGjqlSd61qKqpZxncdj8nDy3Xs37G3LnQlSNQ1a5bpQcpEJ4GkCokcfT6j0LgSvdLn3Zof-WAIrhyjLIcryHOWf89Dcus7b_o__0V-FRnbF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2868125418</pqid></control><display><type>article</type><title>Reactivity Prediction of Cu-Catalyzed Halogen Atom Transfer Reactions Using Data-Driven Techniques</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lorandi, Francesca ; Fantin, Marco ; Jafari, Hossein ; Gorczynski, Adam ; Szczepaniak, Grzegorz ; Dadashi-Silab, Sajjad ; Isse, Abdirisak A. ; Matyjaszewski, Krzysztof</creator><creatorcontrib>Lorandi, Francesca ; Fantin, Marco ; Jafari, Hossein ; Gorczynski, Adam ; Szczepaniak, Grzegorz ; Dadashi-Silab, Sajjad ; Isse, Abdirisak A. ; Matyjaszewski, Krzysztof</creatorcontrib><description>In catalysis, linear free energy relationships (LFERs) are commonly used to identify reaction descriptors that enable the prediction of outcomes and the design of more effective catalysts. Herein, LFERs are established for the reductive cleavage of the C­(sp3)–X bond in alkyl halides (RX) by Cu complexes. This reaction represents the activation step in atom transfer radical polymerization and atom transfer radical addition/cyclization. The values of the activation rate constant, k act, for 107 Cu complex/RX couples in 5 different solvents spanning over 13 orders of magnitude were effectively interpolated by the equation: log k act = sC (I + C + S), where I, C, and S are, respectively, the initiator, catalyst, and solvent parameters, and sC is the catalyst-specific sensitivity parameter. Furthermore, each of these parameters was correlated to relevant descriptors, which included the bond dissociation free energy of RX and its Tolman cone angle θ, the electron affinity of X, the radical stabilization energy, the standard reduction potential of the Cu complex, the polarizability parameter π* of the solvent, and the distortion energy of the complex in its transition state. This set of descriptors establishes the fundamental properties of Cu complexes and RX that determine their reactivity and that need to be considered when designing novel systems for atom transfer radical reactions. Finally, a multivariate linear regression (MLR) approach was adopted to develop an objective model that surpassed the predictive capability of the LFER equation. Thus, the MLR model was employed to predict k act values for &gt;2000 Cu complex/RX pairs.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c07711</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2023-10, Vol.145 (39), p.21587-21599</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-a7ca9ffc84284ba17fe151bc18a6482fef8925dbafda3212aebed7fdc8bdc3d73</citedby><cites>FETCH-LOGICAL-a301t-a7ca9ffc84284ba17fe151bc18a6482fef8925dbafda3212aebed7fdc8bdc3d73</cites><orcidid>0000-0003-0966-1983 ; 0000-0002-4285-5846 ; 0000-0001-9581-2076 ; 0000-0001-5253-8468 ; 0000-0003-1960-3402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lorandi, Francesca</creatorcontrib><creatorcontrib>Fantin, Marco</creatorcontrib><creatorcontrib>Jafari, Hossein</creatorcontrib><creatorcontrib>Gorczynski, Adam</creatorcontrib><creatorcontrib>Szczepaniak, Grzegorz</creatorcontrib><creatorcontrib>Dadashi-Silab, Sajjad</creatorcontrib><creatorcontrib>Isse, Abdirisak A.</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><title>Reactivity Prediction of Cu-Catalyzed Halogen Atom Transfer Reactions Using Data-Driven Techniques</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>In catalysis, linear free energy relationships (LFERs) are commonly used to identify reaction descriptors that enable the prediction of outcomes and the design of more effective catalysts. Herein, LFERs are established for the reductive cleavage of the C­(sp3)–X bond in alkyl halides (RX) by Cu complexes. This reaction represents the activation step in atom transfer radical polymerization and atom transfer radical addition/cyclization. The values of the activation rate constant, k act, for 107 Cu complex/RX couples in 5 different solvents spanning over 13 orders of magnitude were effectively interpolated by the equation: log k act = sC (I + C + S), where I, C, and S are, respectively, the initiator, catalyst, and solvent parameters, and sC is the catalyst-specific sensitivity parameter. Furthermore, each of these parameters was correlated to relevant descriptors, which included the bond dissociation free energy of RX and its Tolman cone angle θ, the electron affinity of X, the radical stabilization energy, the standard reduction potential of the Cu complex, the polarizability parameter π* of the solvent, and the distortion energy of the complex in its transition state. This set of descriptors establishes the fundamental properties of Cu complexes and RX that determine their reactivity and that need to be considered when designing novel systems for atom transfer radical reactions. Finally, a multivariate linear regression (MLR) approach was adopted to develop an objective model that surpassed the predictive capability of the LFER equation. Thus, the MLR model was employed to predict k act values for &gt;2000 Cu complex/RX pairs.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkE9LAzEQxYMoWKs3P0COHtyayf5Lj2WrVigo0p6X2WxSU7ZJTXYL9dO7SwtePA1v-M2bmUfIPbAJMA5PW5RhEkuW5wAXZAQpZ1EKPLskI8YYj3KRxdfkJoRtLxMuYESqT4WyNQfTHumHV7XphbPUaVp0UYEtNscfVdMFNm6jLJ21bkdXHm3QytPTrLOBroOxGzrv-WjuzaEnV0p-WfPdqXBLrjQ2Qd2d65isX55XxSJavr--FbNlhDGDNsJc4lRrKfrDkgoh1wpSqCQIzBLBtdJiytO6Ql1jzIGjqlSd61qKqpZxncdj8nDy3Xs37G3LnQlSNQ1a5bpQcpEJ4GkCokcfT6j0LgSvdLn3Zof-WAIrhyjLIcryHOWf89Dcus7b_o__0V-FRnbF</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Lorandi, Francesca</creator><creator>Fantin, Marco</creator><creator>Jafari, Hossein</creator><creator>Gorczynski, Adam</creator><creator>Szczepaniak, Grzegorz</creator><creator>Dadashi-Silab, Sajjad</creator><creator>Isse, Abdirisak A.</creator><creator>Matyjaszewski, Krzysztof</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0966-1983</orcidid><orcidid>https://orcid.org/0000-0002-4285-5846</orcidid><orcidid>https://orcid.org/0000-0001-9581-2076</orcidid><orcidid>https://orcid.org/0000-0001-5253-8468</orcidid><orcidid>https://orcid.org/0000-0003-1960-3402</orcidid></search><sort><creationdate>20231004</creationdate><title>Reactivity Prediction of Cu-Catalyzed Halogen Atom Transfer Reactions Using Data-Driven Techniques</title><author>Lorandi, Francesca ; Fantin, Marco ; Jafari, Hossein ; Gorczynski, Adam ; Szczepaniak, Grzegorz ; Dadashi-Silab, Sajjad ; Isse, Abdirisak A. ; Matyjaszewski, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-a7ca9ffc84284ba17fe151bc18a6482fef8925dbafda3212aebed7fdc8bdc3d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lorandi, Francesca</creatorcontrib><creatorcontrib>Fantin, Marco</creatorcontrib><creatorcontrib>Jafari, Hossein</creatorcontrib><creatorcontrib>Gorczynski, Adam</creatorcontrib><creatorcontrib>Szczepaniak, Grzegorz</creatorcontrib><creatorcontrib>Dadashi-Silab, Sajjad</creatorcontrib><creatorcontrib>Isse, Abdirisak A.</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lorandi, Francesca</au><au>Fantin, Marco</au><au>Jafari, Hossein</au><au>Gorczynski, Adam</au><au>Szczepaniak, Grzegorz</au><au>Dadashi-Silab, Sajjad</au><au>Isse, Abdirisak A.</au><au>Matyjaszewski, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactivity Prediction of Cu-Catalyzed Halogen Atom Transfer Reactions Using Data-Driven Techniques</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-10-04</date><risdate>2023</risdate><volume>145</volume><issue>39</issue><spage>21587</spage><epage>21599</epage><pages>21587-21599</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>In catalysis, linear free energy relationships (LFERs) are commonly used to identify reaction descriptors that enable the prediction of outcomes and the design of more effective catalysts. Herein, LFERs are established for the reductive cleavage of the C­(sp3)–X bond in alkyl halides (RX) by Cu complexes. This reaction represents the activation step in atom transfer radical polymerization and atom transfer radical addition/cyclization. The values of the activation rate constant, k act, for 107 Cu complex/RX couples in 5 different solvents spanning over 13 orders of magnitude were effectively interpolated by the equation: log k act = sC (I + C + S), where I, C, and S are, respectively, the initiator, catalyst, and solvent parameters, and sC is the catalyst-specific sensitivity parameter. Furthermore, each of these parameters was correlated to relevant descriptors, which included the bond dissociation free energy of RX and its Tolman cone angle θ, the electron affinity of X, the radical stabilization energy, the standard reduction potential of the Cu complex, the polarizability parameter π* of the solvent, and the distortion energy of the complex in its transition state. This set of descriptors establishes the fundamental properties of Cu complexes and RX that determine their reactivity and that need to be considered when designing novel systems for atom transfer radical reactions. Finally, a multivariate linear regression (MLR) approach was adopted to develop an objective model that surpassed the predictive capability of the LFER equation. Thus, the MLR model was employed to predict k act values for &gt;2000 Cu complex/RX pairs.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.3c07711</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0966-1983</orcidid><orcidid>https://orcid.org/0000-0002-4285-5846</orcidid><orcidid>https://orcid.org/0000-0001-9581-2076</orcidid><orcidid>https://orcid.org/0000-0001-5253-8468</orcidid><orcidid>https://orcid.org/0000-0003-1960-3402</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2023-10, Vol.145 (39), p.21587-21599
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2868125418
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Reactivity Prediction of Cu-Catalyzed Halogen Atom Transfer Reactions Using Data-Driven Techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactivity%20Prediction%20of%20Cu-Catalyzed%20Halogen%20Atom%20Transfer%20Reactions%20Using%20Data-Driven%20Techniques&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lorandi,%20Francesca&rft.date=2023-10-04&rft.volume=145&rft.issue=39&rft.spage=21587&rft.epage=21599&rft.pages=21587-21599&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c07711&rft_dat=%3Cproquest_cross%3E2868125418%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a301t-a7ca9ffc84284ba17fe151bc18a6482fef8925dbafda3212aebed7fdc8bdc3d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2868125418&rft_id=info:pmid/&rfr_iscdi=true