Loading…
Mapping Molecular Hamiltonians into Hamiltonians of Modular cQED Processors
We introduce a general method based on the operators of the Dyson-Masleev transformation to map the Hamiltonian of an arbitrary model system into the Hamiltonian of a circuit Quantum Electrodynamics (cQED) processor. Furthermore, we introduce a modular approach to programming a cQED processor with c...
Saved in:
Published in: | Journal of chemical theory and computation 2023-10, Vol.19 (19), p.6564-6576 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce a general method based on the operators of the Dyson-Masleev transformation to map the Hamiltonian of an arbitrary model system into the Hamiltonian of a circuit Quantum Electrodynamics (cQED) processor. Furthermore, we introduce a modular approach to programming a cQED processor with components corresponding to the mapping Hamiltonian. The method is illustrated as applied to quantum dynamics simulations of the Fenna-Matthews-Olson (FMO) complex and the spin-boson model of charge transfer. Beyond applications to molecular Hamiltonians, the mapping provides a general approach to implement any unitary operator in terms of a sequence of unitary transformations corresponding to powers of creation and annihilation operators of a single bosonic mode in a cQED processor. |
---|---|
ISSN: | 1549-9618 1549-9626 |
DOI: | 10.1021/acs.jctc.3c00620 |