Loading…

Everolimus prevents doxorubicin-induced apoptosis in H9c2 cardiomyocytes but not in MCF-7 cancer cells: Cardioprotective roles of autophagy, mitophagy, and AKT

Cardiotoxicity is a severe side effect of the chemotherapeutic agent doxorubicin (DOX). We recently showed that DOX-induced cardiomyocyte apoptosis and death were attenuated through autophagy pre-induction. Herein, we assessed how the autophagy/mitophagy-inducing antitumor drug everolimus (EVL) affe...

Full description

Saved in:
Bibliographic Details
Published in:Toxicology in vitro 2023-12, Vol.93, p.105698-105698, Article 105698
Main Authors: Kanno, Syu-ichi, Hara, Akiyoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cardiotoxicity is a severe side effect of the chemotherapeutic agent doxorubicin (DOX). We recently showed that DOX-induced cardiomyocyte apoptosis and death were attenuated through autophagy pre-induction. Herein, we assessed how the autophagy/mitophagy-inducing antitumor drug everolimus (EVL) affected DOX-induced cytotoxicity in the rat cardiomyocyte cell line H9c2 and human breast cancer cell line MCF-7. Apoptosis was assessed using annexin V assay. Autophagy and mitophagy were assessed using fluorescence assays. Cellular protein levels were determined using western blotting. Pretreatment with EVL (1 nM) before DOX exposure inhibited mammalian target of rapamycin (mTOR) activity, induced autophagy and mitophagy, and activated protein kinase B (AKT) in H9c2 cells. In mitochondria, DOX (1 μM) induced structural damage (decreased membrane potential and release of cytochrome c), increased superoxide levels, decreased apoptosis inhibitor Bcl-2, and increased apoptosis inducer Bax, leading to apoptosis and reduced viability in H9c2 cells. EVL pretreatment suppressed DOX-induced changes. EVL anti-apoptotic effects were inhibited by treatment with MK-2206, a selective AKT inhibitor. Furthermore, EVL suppressed DOX-induced cardiotoxicity through autophagy/mitophagy and AKT activation but did not attenuate DOX-induced apoptosis or reduction in viability in MCF-7 cells. Altogether, EVL can protect cardiomyocytes from DOX-induced apoptosis and toxicity without reducing DOX antitumor effects, allowing safer chemotherapy. •Everolimus (EVL) inhibited mTOR activity to induce autophagy and mitophagy in H9c2 cells.•EVL suppressed DOX-induced mitochondrial damage in H92c cells.•EVL did not attenuate DOX-induced apoptosis or viability reduction in MCF-7 cells.•EVL imparts cardioprotection without reducing DOX antitumor effects.•EVL treatment with DOX allows more effective and safer chemotherapy.
ISSN:0887-2333
1879-3177
DOI:10.1016/j.tiv.2023.105698