Loading…
Importance of microbial amphiphiles: interaction potential of biosurfactants, amyloids, and other exo-polymeric-substances
Microorganisms produce a diverse group of biomolecules having amphipathic nature (amphiphiles). Microbial amphiphiles, including amyloids, bio-surfactants, and other exo-polymeric substances, play a crucial role in various biological processes and have gained significant attention recently. Although...
Saved in:
Published in: | World journal of microbiology & biotechnology 2023-11, Vol.39 (11), p.320-320, Article 320 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microorganisms produce a diverse group of biomolecules having amphipathic nature (amphiphiles). Microbial amphiphiles, including amyloids, bio-surfactants, and other exo-polymeric substances, play a crucial role in various biological processes and have gained significant attention recently. Although diverse in biochemical composition, these amphiphiles have been reported for common microbial traits like biofilm formation and pathogenicity due to their ability to act as surface active agents with active interfacial properties essential for microbes to grow in various niches. This enables microbes to reduce surface tension, emulsification, dispersion, and attachment at the interface. In this report, the ecological importance and biotechnological usage of important amphiphiles have been discussed. The low molecular weight amphiphiles like biosurfactants, siderophores, and peptides showing helical and antimicrobial activities have been extensively reported for their ability to work as quorum-sensing mediators. While high molecular weight amphiphiles make up amyloid fibers, exopolysaccharides, liposomes, or magnetosomes have been shown to have a significant influence in deciding microbial physiology and survival. In this report, we have discussed the functional similarities and biochemical variations of several amphipathic biomolecules produced by microbes, and the present report shows these amphiphiles showing polyphyletic and ecophysiological groups of microorganisms and hence can `be replaced in biotechnological applications depending on the compatibility of the processes. |
---|---|
ISSN: | 0959-3993 1573-0972 |
DOI: | 10.1007/s11274-023-03751-9 |