Loading…
A variable step size LMS algorithm
A least-mean-square (LMS) adaptive filter with a variable step size is introduced. The step size increases or decreases as the mean-square error increases or decreases, allowing the adaptive filter to track changes in the system as well as produce a small steady state error. The convergence and stea...
Saved in:
Published in: | IEEE transactions on signal processing 1992-07, Vol.40 (7), p.1633-1642 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c277t-f70bcbc6f74f98b68cc1b5afdf1d5fd6e7a7e7eb2978f4a52f8f5a515e382b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c277t-f70bcbc6f74f98b68cc1b5afdf1d5fd6e7a7e7eb2978f4a52f8f5a515e382b43 |
container_end_page | 1642 |
container_issue | 7 |
container_start_page | 1633 |
container_title | IEEE transactions on signal processing |
container_volume | 40 |
creator | Kwong, R.H. Johnston, E.W. |
description | A least-mean-square (LMS) adaptive filter with a variable step size is introduced. The step size increases or decreases as the mean-square error increases or decreases, allowing the adaptive filter to track changes in the system as well as produce a small steady state error. The convergence and steady-state behavior of the algorithm are analyzed. The results reduce to well-known results when specialized to the constant-step-size case. Simulation results are presented to support the analysis and to compare the performance of the algorithm with the usual LMS algorithm and another variable-step-size algorithm. They show that its performance compares favorably with these existing algorithms.< > |
doi_str_mv | 10.1109/78.143435 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28690504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>143435</ieee_id><sourcerecordid>28690504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-f70bcbc6f74f98b68cc1b5afdf1d5fd6e7a7e7eb2978f4a52f8f5a515e382b43</originalsourceid><addsrcrecordid>eNpF0L9LxDAUB_AgCp6ng6tTcRAceiZt0peMx3H-gIqDN7iFJH3RSGtr0hP0r_eOCk7fB98Pb_gScs7ogjGqbkAuGC95KQ7IjCnOcsqhOtzdVJS5kPByTE5SeqeUca6qGblcZl8mBmNbzNKIQ5bCD2b143Nm2tc-hvGtOyVH3rQJz_5yTja3683qPq-f7h5Wyzp3BcCYe6DWWVd54F5JW0nnmBXGN541wjcVggEEtIUC6bkRhZdeGMEElrKwvJyTq-ntEPvPLaZRdyE5bFvzgf026UJWigq6h9cTdLFPKaLXQwydid-aUb0fQYPU0wg7ezHZgIj_bip_Af4TVic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28690504</pqid></control><display><type>article</type><title>A variable step size LMS algorithm</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kwong, R.H. ; Johnston, E.W.</creator><creatorcontrib>Kwong, R.H. ; Johnston, E.W.</creatorcontrib><description>A least-mean-square (LMS) adaptive filter with a variable step size is introduced. The step size increases or decreases as the mean-square error increases or decreases, allowing the adaptive filter to track changes in the system as well as produce a small steady state error. The convergence and steady-state behavior of the algorithm are analyzed. The results reduce to well-known results when specialized to the constant-step-size case. Simulation results are presented to support the analysis and to compare the performance of the algorithm with the usual LMS algorithm and another variable-step-size algorithm. They show that its performance compares favorably with these existing algorithms.< ></description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.143435</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive filters ; Algorithm design and analysis ; Analytical models ; Convergence ; Equations ; Least squares approximation ; Performance analysis ; Signal processing ; Steady-state ; System identification</subject><ispartof>IEEE transactions on signal processing, 1992-07, Vol.40 (7), p.1633-1642</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-f70bcbc6f74f98b68cc1b5afdf1d5fd6e7a7e7eb2978f4a52f8f5a515e382b43</citedby><cites>FETCH-LOGICAL-c277t-f70bcbc6f74f98b68cc1b5afdf1d5fd6e7a7e7eb2978f4a52f8f5a515e382b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/143435$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Kwong, R.H.</creatorcontrib><creatorcontrib>Johnston, E.W.</creatorcontrib><title>A variable step size LMS algorithm</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>A least-mean-square (LMS) adaptive filter with a variable step size is introduced. The step size increases or decreases as the mean-square error increases or decreases, allowing the adaptive filter to track changes in the system as well as produce a small steady state error. The convergence and steady-state behavior of the algorithm are analyzed. The results reduce to well-known results when specialized to the constant-step-size case. Simulation results are presented to support the analysis and to compare the performance of the algorithm with the usual LMS algorithm and another variable-step-size algorithm. They show that its performance compares favorably with these existing algorithms.< ></description><subject>Adaptive filters</subject><subject>Algorithm design and analysis</subject><subject>Analytical models</subject><subject>Convergence</subject><subject>Equations</subject><subject>Least squares approximation</subject><subject>Performance analysis</subject><subject>Signal processing</subject><subject>Steady-state</subject><subject>System identification</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpF0L9LxDAUB_AgCp6ng6tTcRAceiZt0peMx3H-gIqDN7iFJH3RSGtr0hP0r_eOCk7fB98Pb_gScs7ogjGqbkAuGC95KQ7IjCnOcsqhOtzdVJS5kPByTE5SeqeUca6qGblcZl8mBmNbzNKIQ5bCD2b143Nm2tc-hvGtOyVH3rQJz_5yTja3683qPq-f7h5Wyzp3BcCYe6DWWVd54F5JW0nnmBXGN541wjcVggEEtIUC6bkRhZdeGMEElrKwvJyTq-ntEPvPLaZRdyE5bFvzgf026UJWigq6h9cTdLFPKaLXQwydid-aUb0fQYPU0wg7ezHZgIj_bip_Af4TVic</recordid><startdate>19920701</startdate><enddate>19920701</enddate><creator>Kwong, R.H.</creator><creator>Johnston, E.W.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19920701</creationdate><title>A variable step size LMS algorithm</title><author>Kwong, R.H. ; Johnston, E.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-f70bcbc6f74f98b68cc1b5afdf1d5fd6e7a7e7eb2978f4a52f8f5a515e382b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Adaptive filters</topic><topic>Algorithm design and analysis</topic><topic>Analytical models</topic><topic>Convergence</topic><topic>Equations</topic><topic>Least squares approximation</topic><topic>Performance analysis</topic><topic>Signal processing</topic><topic>Steady-state</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwong, R.H.</creatorcontrib><creatorcontrib>Johnston, E.W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwong, R.H.</au><au>Johnston, E.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A variable step size LMS algorithm</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1992-07-01</date><risdate>1992</risdate><volume>40</volume><issue>7</issue><spage>1633</spage><epage>1642</epage><pages>1633-1642</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>A least-mean-square (LMS) adaptive filter with a variable step size is introduced. The step size increases or decreases as the mean-square error increases or decreases, allowing the adaptive filter to track changes in the system as well as produce a small steady state error. The convergence and steady-state behavior of the algorithm are analyzed. The results reduce to well-known results when specialized to the constant-step-size case. Simulation results are presented to support the analysis and to compare the performance of the algorithm with the usual LMS algorithm and another variable-step-size algorithm. They show that its performance compares favorably with these existing algorithms.< ></abstract><pub>IEEE</pub><doi>10.1109/78.143435</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 1992-07, Vol.40 (7), p.1633-1642 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_28690504 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptive filters Algorithm design and analysis Analytical models Convergence Equations Least squares approximation Performance analysis Signal processing Steady-state System identification |
title | A variable step size LMS algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20variable%20step%20size%20LMS%20algorithm&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Kwong,%20R.H.&rft.date=1992-07-01&rft.volume=40&rft.issue=7&rft.spage=1633&rft.epage=1642&rft.pages=1633-1642&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.143435&rft_dat=%3Cproquest_cross%3E28690504%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-f70bcbc6f74f98b68cc1b5afdf1d5fd6e7a7e7eb2978f4a52f8f5a515e382b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28690504&rft_id=info:pmid/&rft_ieee_id=143435&rfr_iscdi=true |