Loading…

The potential of times series of C-Band SAR data to monitor dry and shallow snow cover

A study was conducted to assess the potential of C-band synthetic aperture radar (SAR) data to determine the snow water equivalent (SWE). A multitemporal (three winters) SAR data set was obtained using the Convair-580 from the Canada Centre for Remote Sensing (CCRS) over a watershed in the Appalachi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 1998-01, Vol.36 (1), p.226-243
Main Authors: Bernier, M., Fortin, J.-P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A study was conducted to assess the potential of C-band synthetic aperture radar (SAR) data to determine the snow water equivalent (SWE). A multitemporal (three winters) SAR data set was obtained using the Convair-580 from the Canada Centre for Remote Sensing (CCRS) over a watershed in the Appalachian Mountains in Southern Quebec, Canada. The SAR data were relatively calibrated using extended targets (coniferous stands). Extensive ground measurements were done simultaneously to each of the seven flights, in order to measure the snow cover characteristics (depth, density, SWE, liquid water content, temperature, and dielectric profiles) as well as the soil characteristics (moisture, temperature). To estimate the SWE of a given snowpack, a model which links the scattering coefficient to the physical parameters of the snow cover and the underlying soil has been developed. The model is based on the ratio of the scattering coefficient of a field covered by snow to the scattering coefficient of a field without snow. The analysis has revealed that volume scattering from a shallow dry snow cover (SWE
ISSN:0196-2892
1558-0644
DOI:10.1109/36.655332