Loading…

Protein–Protein Interfaces as Druggable Targets: A Common Motif of the Pyridoxal-5′-Phosphate-Dependent Enzymes to Receive the Coenzyme from Its Producers

Pyridoxal-5′-phosphate (PLP), a phosphorylated form of vitamin B6, acts as a coenzyme for numerous reactions, including those changed in cancer and/or associated with the disease prognosis. Since highly reactive PLP can modify cellular proteins, it is hypothesized to be directly transferred from its...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Moscow) 2023-07, Vol.88 (7), p.1022-1033
Main Authors: Aleshin, Vasily A., Bunik, Victoria I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pyridoxal-5′-phosphate (PLP), a phosphorylated form of vitamin B6, acts as a coenzyme for numerous reactions, including those changed in cancer and/or associated with the disease prognosis. Since highly reactive PLP can modify cellular proteins, it is hypothesized to be directly transferred from its donors to acceptors. Our goal is to validate the hypothesis by finding common motif(s) in the multitude of PLP-dependent enzymes for binding the limited number of PLP donors, namely pyridoxal kinase (PdxK), pyridox(am)in-5′-phosphate oxidase (PNPO), and PLP-binding protein (PLPBP). Experimentally confirmed interactions between the PLP donors and acceptors reveal that PdxK and PNPO interact with the most abundant PLP acceptors belonging to structural folds I and II, while PLPBP – with those belonging to folds III and V. Aligning sequences and 3D structures of the identified interactors of PdxK and PNPO, we have identified a common motif in the PLP-dependent enzymes of folds I and II. The motif extends from the enzyme surface to the neighborhood of the PLP binding site, represented by an exposed alfa-helix, a partially buried beta-strand, and residual loops. Pathogenicity of mutations in the human PLP-dependent enzymes within or in the vicinity of the motif, but outside of the active sites, supports functional significance of the motif that may provide an interface for the direct transfer of PLP from the sites of its synthesis to those of coenzyme binding. The enzyme-specific amino acid residues of the common motif may be useful to develop selective inhibitors blocking PLP delivery to the PLP-dependent enzymes critical for proliferation of malignant cells.
ISSN:0006-2979
1608-3040
DOI:10.1134/S0006297923070131