Loading…

Controlled radical polymerization of styrene and methyl acrylate in the presence of reversible addition-fragmentation chain transfer agents, phenylethyl phenyl dithioacetate and phenyldithioacetic acid

The use of phenyldithioacetic acid (PDA) in homopolymerizations of styrene or methyl acrylate produced only a small fraction of chains with dithioester end groups. The polymerizations using 1‐phenylentyl phenyldithioacetate (PEPDTA) and PDA in the same reaction showed that PDA had little or no influ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of polymer science. Part A, Polymer chemistry Polymer chemistry, 2005-11, Vol.43 (21), p.5232-5245
Main Authors: Goh, Yong-Keng, Whittaker, Michael R., Monteiro, Michael J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of phenyldithioacetic acid (PDA) in homopolymerizations of styrene or methyl acrylate produced only a small fraction of chains with dithioester end groups. The polymerizations using 1‐phenylentyl phenyldithioacetate (PEPDTA) and PDA in the same reaction showed that PDA had little or no influence on the rate or molecular weight distribution even when a 1:1 ratio is used. The mechanistic pathway for the polymerizations in the presence of PDA seemed to be different for each monomer. Styrene favors addition of styrene to PDA via a Markovnikov type addition to form a reactive RAFT agent. The polymer was shown by double detection SEC to contain dithioester end groups over the whole distribution. This polymer was then used in a chain extension experiment and the Mn was close to theory. A unique feature of this work was that PDA could be used to form a RAFT agent in situ by heating a mixture of styrene and PDA for 24 h at 70 °C and then polymerizing in the presence of AIBN to give a linear increase in Mn and low values of PDI (
ISSN:0887-624X
1099-0518
DOI:10.1002/pola.21020