Loading…

Wireless micromachined ceramic pressure sensor for high-temperature applications

In high-temperature applications, such as pressure sensing in turbine engines and compressors, high-temperature materials and data retrieval methods are required. The microelectronics packaging infrastructure provides high-temperature ceramic materials, fabrication tools, and well-developed processi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microelectromechanical systems 2002-08, Vol.11 (4), p.337-343
Main Authors: Fonseca, M.A., English, J.M., von Arx, M., Allen, M.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In high-temperature applications, such as pressure sensing in turbine engines and compressors, high-temperature materials and data retrieval methods are required. The microelectronics packaging infrastructure provides high-temperature ceramic materials, fabrication tools, and well-developed processing techniques that have the potential for applicability in high-temperature sensing. Based on this infrastructure, a completely passive ceramic pressure sensor that uses a wireless telemetry scheme has been developed. The passive nature of the telemetry removes the need for electronics, power supplies, or contacts to withstand the high-temperature environment. The sensor contains a passive LC resonator comprised of a movable diaphragm capacitor and a fixed inductor, thereby causing the sensor resonant frequency to be pressure-dependent. Data is retrieved with an external loop antenna. The sensor has been fabricated and characterized and was compared with an electromechanical model. It was operated up to 400/spl deg/C in a pressure range from 0 to 7 Bar. The average sensitivity and accuracy of three typical sensors are: -141 kHz Bar/sup -1/ and 24 mbar, respectively.
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2002.800939