Loading…

Wideband compressive receiver based on advanced superconductor and semiconductor circuits

A novel compressive cryoreceiver architecture has been proposed combining analog HTS, cryoelectronic, and advanced high-speed GaAs and high-speed/low-power SOI CMOS semiconductor technologies. The proposed receiver will rival the sensitivity of narrowband receivers while providing unprecedented wide...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 1997-06, Vol.7 (2), p.2462-2467
Main Authors: Lyons, W.G., Arsenault, D.R., Keast, C.L., Shaver, D.C., Berger, R., Anderson, A.C., Murphy, P.G., Sollner, T.C.L.G., Ralston, R.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel compressive cryoreceiver architecture has been proposed combining analog HTS, cryoelectronic, and advanced high-speed GaAs and high-speed/low-power SOI CMOS semiconductor technologies. The proposed receiver will rival the sensitivity of narrowband receivers while providing unprecedented wideband instantaneous frequency coverage with very small size, weight, and power requirements. Future developments will extend the bandwidth capability. HTS tapped-delay-line chirp filters are the enabling technology for instantaneous bandwidths greater than 1 GHz. The filters support dispersive delays as long as 40 ns and time-bandwidth products in excess of 100 using a bonded/thinned-wafer technique to fabricate YBa/sub 2/Cu/sub 3/O/sub 7-/spl part// stripline structures on 125-/spl mu/m-thick, 5-cm-diam LaAlO/sub 3/ substrates. The filters have produced better than -18-dB error sidelobes in a receiver configuration. Preliminary work toward SOI CMOS receiver ASICs is reported. These ASICs will perform pulse data thinning, and binary integration functions. Requirements for A/D converters are discussed.
ISSN:1051-8223
1558-2515
DOI:10.1109/77.621738