Loading…
In-situ fabrication of bimetallic FeCo2O4-FeCo2S4 heterostructure for high-efficient alkaline freshwater/seawater electrolysis
[Display omitted] Rational construction of bifunctional electrocatalysts with long-term stability and high electrocatalytic activity is of great importance, but it is challenging to obtain highly efficient non-precious metal-based catalysts for overall seawater electrolysis. Herein, a nickel foam (N...
Saved in:
Published in: | Journal of colloid and interface science 2024-01, Vol.653, p.821-832 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Rational construction of bifunctional electrocatalysts with long-term stability and high electrocatalytic activity is of great importance, but it is challenging to obtain highly efficient non-precious metal-based catalysts for overall seawater electrolysis. Herein, a nickel foam (NF) self-supporting CoFe-layered double hydroxide (CoFe-LDH/NF) was directly converted into FeCo2O4-FeCo2S4 heterostructure via hydrothermal method in 50 mM Na2S solution, instead of FeCo2O4@FeCo2S4 core-shell structure. The FeCo2O4-FeCo2S4 heterojunction shows nanosheets structure with rough surface (the thickness of ∼ 198.9 nm), which provides rich oxide/sulfide interfaces, high electrochemical active area, a large number of active sites, as well as fast charge and mass transfer. In 1.0 M KOH solution, 1.0 M KOH + 0.5 M NaCl, and alkaline natural seawater, the FeCo2O4-FeCo2S4 heterojunction exhibits eminently electrocatalytic performance, with overpotentials of η-100 = 225 mV, η-100 = 233 mV, and η-100 = 238 mV for OER, as well as η-100 = 271 mV, η-100 = 273 mV, and η-100 = 277 mV for HER, respectively. Furthermore, self-supporting FeCo2O4-FeCo2S4 electrode (FeCo2O4-FeCo2S4/NF) as the cathode and anode of an electrolyzer exhibits a lower cell voltage of E-100 = 1.75 V in alkaline seawater than those of FeCo2S4/NF (1.77 V), CoFe-LDH/NF (1.87 V), and FeCo2O4/NF (1.91 V). Specifically, FeCo2O4-FeCo2S4 electrolyzer can stably produce hydrogen for over 48 h in alkaline freshwater/seawater electrolyte. These outstanding electrocatalytic performances and corrosion resistance to salty-water can be attributed to the surface reconstruction behavior of the FeCo2O4-FeCo2S4/NF catalyst during OER, which leads to the in-situ formation of metal oxyhydroxides. In particular, the FeCo2O4-FeCo2S4 heterojunction is also very competitive among most state-of-the-art non-noble metal-based catalysts, whether in KOH or alkaline salty-water electrolytes. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2023.09.126 |