Loading…

Enhanced stereocomplex crystalline polylactic acids in melt processed enantiomeric bicomponent fiber configurations

The formation of stereocomplex crystalline domains in the bicomponent fiber melt spinning of enantiomeric polylactic acids (PLAs) is systematically explored and enhanced. Here we report a polycrystalline morphology where distinctly different crystalline regions are formed and aligned along the longi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2023-12, Vol.253, p.127123-127123, Article 127123
Main Authors: Zhao, Renhai, Cai, Shunzhong, Zhao, Yintao, Ning, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The formation of stereocomplex crystalline domains in the bicomponent fiber melt spinning of enantiomeric polylactic acids (PLAs) is systematically explored and enhanced. Here we report a polycrystalline morphology where distinctly different crystalline regions are formed and aligned along the longitudinal direction of the fiber. This approach employs side-by-side and sheath-core bicomponent melt spinning configurations where the two components are the enantiomeric pairs of poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA). We demonstrate the formation of the PLA stereocomplexes at the junction interphase through the melt spinning process which subsequently crystallize into a round fibers with stereocomplex and homogeneous crystal lamella morphologies. The fiber morphologies and crystallinities of the melt processed fiber are substantially different from the solution based bicomponent spinning system reported in the prior literature. Furthermore, the different molecular weight in the PLLA/PDLA pairing are found to be crucial to the structural development and properties of the PLA polycrystalline materials. The solid-state annealing does not change the crystal distribution of the crystalline domains and stereocomplex crystalline state, it just enhances the homo-crystallinity in the peripheral of the bicomponent fibers.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.127123