Loading…

Reactive Oxygen Species (ROS)‐Assisted Nano‐Therapeutics Surface‐Decorated with Epidermal Growth Factor Fragments for Enhanced Wound Healing

In this study, stimuli‐responsive liberation of an epidermal growth factor fragment (EGFfr) is accomplished using nanofibrous meshes to improve wound healing effects. Electrospun nanofibers are fragmented by mechanical milling, followed by aminolysis to fabricate powdered nanofibrils (NFs). EGFfrs a...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular bioscience 2024-02, Vol.24 (2), p.e2300225-n/a
Main Authors: Lee, Miso, Bui, Hoai‐Thuong Duc, Pham, Lan, Kim, Songrae, Yoo, Hyuk Sang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3285-a6983596d3cdd533b0dff986a38be62589e712a5c8138ec184044df95c93650d3
container_end_page n/a
container_issue 2
container_start_page e2300225
container_title Macromolecular bioscience
container_volume 24
creator Lee, Miso
Bui, Hoai‐Thuong Duc
Pham, Lan
Kim, Songrae
Yoo, Hyuk Sang
description In this study, stimuli‐responsive liberation of an epidermal growth factor fragment (EGFfr) is accomplished using nanofibrous meshes to improve wound healing effects. Electrospun nanofibers are fragmented by mechanical milling, followed by aminolysis to fabricate powdered nanofibrils (NFs). EGFfrs are covalently immobilized on NFs via thioketal linkers (EGFfr@TK@NF) for reactive oxygen species (ROS)–dependent liberation. EGFfr@TK@NF exhibits ROS‐responsive liberation of EGFfr from the matrix at hydrogen peroxide (H2O2) concentrations of 0–250 mm. Released EGFfr is confirmed to enhance the migration of HaCaT cell monolayers, and keratinocytic gene expression levels are significantly enhanced when H2O2 is added to obtain the released fraction of NFs. An in vivo study on the dorsal wounds of mice reveals that EGFfr‐immobilized NFs improve the expression levels of keratin1, 5, and 14 for 2 weeks when H2O2 is added to the wound sites, suggesting that the wounded skin is re‐epithelized with the original epidermis. Thus, EGFfrs‐immobilized NFs are anticipated to be potential nanotherapeutics for wound treatment in combination with the conventional disinfection process with H2O2. An ROS‐responsively liberated epidermal growth factor fragment (EGFfr) is synthesized using thioketal‐conjugated in nanofibrous meshes (EGFfr@TK@NF) to enhance wound healing. EGFfr released from EGFfr@TK@NF is dependent on H2O2 concentration. In vitro and in vivo studies confirm that EGFfr@TK@NF increases keratins and collagens gene expression, and the retention of EGFfr on the wounds, suggesting a promising strategy for wound treatment.
doi_str_mv 10.1002/mabi.202300225
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2870993234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870993234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3285-a6983596d3cdd533b0dff986a38be62589e712a5c8138ec184044df95c93650d3</originalsourceid><addsrcrecordid>eNqFkc9uEzEQxlcIREvhyhFZ4lIOCf6z9trHUJK2UiFSU8Rx5diziavd9WLvkubWR0A8Yp-kjlKCxIXTzDf6zTeWvyx7S_CYYEw_NnrpxhRTlgTlz7JjIogYcaL480Mvi6PsVYy3GJNCKvoyO2JFUWCai-Ps9zVo07ufgOZ32xW0aNGBcRDR6fV88eHh_tckRhd7sOirbn3SN2sIuoOhdyaixRAqbSCNP4PxQe-4jevXaNo5C6HRNToPfpMGs3TFBzQLetVA20dUJTVt17o1aee7H1qLLkDXrl29zl5Uuo7w5qmeZN9m05uzi9HV_PzybHI1MoxKPtJCScaVsMxYyxlbYltVSgrN5BIE5VJBQajmRhImwRCZ4zy3leJGMcGxZSfZ6d63C_7HALEvGxcN1LVuwQ-xpLLASjHK8oS-_we99UNo0-tKqqiQ6VcLlajxnjLBxxigKrvgGh22JcHlLq1yl1Z5SCstvHuyHZYN2AP-J54EqD2wcTVs_2NXfpl8uvxr_gh-DqQ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926889279</pqid></control><display><type>article</type><title>Reactive Oxygen Species (ROS)‐Assisted Nano‐Therapeutics Surface‐Decorated with Epidermal Growth Factor Fragments for Enhanced Wound Healing</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lee, Miso ; Bui, Hoai‐Thuong Duc ; Pham, Lan ; Kim, Songrae ; Yoo, Hyuk Sang</creator><creatorcontrib>Lee, Miso ; Bui, Hoai‐Thuong Duc ; Pham, Lan ; Kim, Songrae ; Yoo, Hyuk Sang</creatorcontrib><description>In this study, stimuli‐responsive liberation of an epidermal growth factor fragment (EGFfr) is accomplished using nanofibrous meshes to improve wound healing effects. Electrospun nanofibers are fragmented by mechanical milling, followed by aminolysis to fabricate powdered nanofibrils (NFs). EGFfrs are covalently immobilized on NFs via thioketal linkers (EGFfr@TK@NF) for reactive oxygen species (ROS)–dependent liberation. EGFfr@TK@NF exhibits ROS‐responsive liberation of EGFfr from the matrix at hydrogen peroxide (H2O2) concentrations of 0–250 mm. Released EGFfr is confirmed to enhance the migration of HaCaT cell monolayers, and keratinocytic gene expression levels are significantly enhanced when H2O2 is added to obtain the released fraction of NFs. An in vivo study on the dorsal wounds of mice reveals that EGFfr‐immobilized NFs improve the expression levels of keratin1, 5, and 14 for 2 weeks when H2O2 is added to the wound sites, suggesting that the wounded skin is re‐epithelized with the original epidermis. Thus, EGFfrs‐immobilized NFs are anticipated to be potential nanotherapeutics for wound treatment in combination with the conventional disinfection process with H2O2. An ROS‐responsively liberated epidermal growth factor fragment (EGFfr) is synthesized using thioketal‐conjugated in nanofibrous meshes (EGFfr@TK@NF) to enhance wound healing. EGFfr released from EGFfr@TK@NF is dependent on H2O2 concentration. In vitro and in vivo studies confirm that EGFfr@TK@NF increases keratins and collagens gene expression, and the retention of EGFfr on the wounds, suggesting a promising strategy for wound treatment.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.202300225</identifier><identifier>PMID: 37770246</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cell migration ; Disinfection ; Epidermal growth factor ; Epidermis ; Gene expression ; Growth factors ; Hydrogen peroxide ; In vivo methods and tests ; Mechanical milling ; nanofiber ; Oxygen ; Reactive oxygen species ; thioketal ; Wound healing</subject><ispartof>Macromolecular bioscience, 2024-02, Vol.24 (2), p.e2300225-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3285-a6983596d3cdd533b0dff986a38be62589e712a5c8138ec184044df95c93650d3</cites><orcidid>0000-0002-4346-9154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37770246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Miso</creatorcontrib><creatorcontrib>Bui, Hoai‐Thuong Duc</creatorcontrib><creatorcontrib>Pham, Lan</creatorcontrib><creatorcontrib>Kim, Songrae</creatorcontrib><creatorcontrib>Yoo, Hyuk Sang</creatorcontrib><title>Reactive Oxygen Species (ROS)‐Assisted Nano‐Therapeutics Surface‐Decorated with Epidermal Growth Factor Fragments for Enhanced Wound Healing</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>In this study, stimuli‐responsive liberation of an epidermal growth factor fragment (EGFfr) is accomplished using nanofibrous meshes to improve wound healing effects. Electrospun nanofibers are fragmented by mechanical milling, followed by aminolysis to fabricate powdered nanofibrils (NFs). EGFfrs are covalently immobilized on NFs via thioketal linkers (EGFfr@TK@NF) for reactive oxygen species (ROS)–dependent liberation. EGFfr@TK@NF exhibits ROS‐responsive liberation of EGFfr from the matrix at hydrogen peroxide (H2O2) concentrations of 0–250 mm. Released EGFfr is confirmed to enhance the migration of HaCaT cell monolayers, and keratinocytic gene expression levels are significantly enhanced when H2O2 is added to obtain the released fraction of NFs. An in vivo study on the dorsal wounds of mice reveals that EGFfr‐immobilized NFs improve the expression levels of keratin1, 5, and 14 for 2 weeks when H2O2 is added to the wound sites, suggesting that the wounded skin is re‐epithelized with the original epidermis. Thus, EGFfrs‐immobilized NFs are anticipated to be potential nanotherapeutics for wound treatment in combination with the conventional disinfection process with H2O2. An ROS‐responsively liberated epidermal growth factor fragment (EGFfr) is synthesized using thioketal‐conjugated in nanofibrous meshes (EGFfr@TK@NF) to enhance wound healing. EGFfr released from EGFfr@TK@NF is dependent on H2O2 concentration. In vitro and in vivo studies confirm that EGFfr@TK@NF increases keratins and collagens gene expression, and the retention of EGFfr on the wounds, suggesting a promising strategy for wound treatment.</description><subject>Cell migration</subject><subject>Disinfection</subject><subject>Epidermal growth factor</subject><subject>Epidermis</subject><subject>Gene expression</subject><subject>Growth factors</subject><subject>Hydrogen peroxide</subject><subject>In vivo methods and tests</subject><subject>Mechanical milling</subject><subject>nanofiber</subject><subject>Oxygen</subject><subject>Reactive oxygen species</subject><subject>thioketal</subject><subject>Wound healing</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc9uEzEQxlcIREvhyhFZ4lIOCf6z9trHUJK2UiFSU8Rx5diziavd9WLvkubWR0A8Yp-kjlKCxIXTzDf6zTeWvyx7S_CYYEw_NnrpxhRTlgTlz7JjIogYcaL480Mvi6PsVYy3GJNCKvoyO2JFUWCai-Ps9zVo07ufgOZ32xW0aNGBcRDR6fV88eHh_tckRhd7sOirbn3SN2sIuoOhdyaixRAqbSCNP4PxQe-4jevXaNo5C6HRNToPfpMGs3TFBzQLetVA20dUJTVt17o1aee7H1qLLkDXrl29zl5Uuo7w5qmeZN9m05uzi9HV_PzybHI1MoxKPtJCScaVsMxYyxlbYltVSgrN5BIE5VJBQajmRhImwRCZ4zy3leJGMcGxZSfZ6d63C_7HALEvGxcN1LVuwQ-xpLLASjHK8oS-_we99UNo0-tKqqiQ6VcLlajxnjLBxxigKrvgGh22JcHlLq1yl1Z5SCstvHuyHZYN2AP-J54EqD2wcTVs_2NXfpl8uvxr_gh-DqQ4</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Lee, Miso</creator><creator>Bui, Hoai‐Thuong Duc</creator><creator>Pham, Lan</creator><creator>Kim, Songrae</creator><creator>Yoo, Hyuk Sang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4346-9154</orcidid></search><sort><creationdate>202402</creationdate><title>Reactive Oxygen Species (ROS)‐Assisted Nano‐Therapeutics Surface‐Decorated with Epidermal Growth Factor Fragments for Enhanced Wound Healing</title><author>Lee, Miso ; Bui, Hoai‐Thuong Duc ; Pham, Lan ; Kim, Songrae ; Yoo, Hyuk Sang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3285-a6983596d3cdd533b0dff986a38be62589e712a5c8138ec184044df95c93650d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cell migration</topic><topic>Disinfection</topic><topic>Epidermal growth factor</topic><topic>Epidermis</topic><topic>Gene expression</topic><topic>Growth factors</topic><topic>Hydrogen peroxide</topic><topic>In vivo methods and tests</topic><topic>Mechanical milling</topic><topic>nanofiber</topic><topic>Oxygen</topic><topic>Reactive oxygen species</topic><topic>thioketal</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Miso</creatorcontrib><creatorcontrib>Bui, Hoai‐Thuong Duc</creatorcontrib><creatorcontrib>Pham, Lan</creatorcontrib><creatorcontrib>Kim, Songrae</creatorcontrib><creatorcontrib>Yoo, Hyuk Sang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Miso</au><au>Bui, Hoai‐Thuong Duc</au><au>Pham, Lan</au><au>Kim, Songrae</au><au>Yoo, Hyuk Sang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactive Oxygen Species (ROS)‐Assisted Nano‐Therapeutics Surface‐Decorated with Epidermal Growth Factor Fragments for Enhanced Wound Healing</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2024-02</date><risdate>2024</risdate><volume>24</volume><issue>2</issue><spage>e2300225</spage><epage>n/a</epage><pages>e2300225-n/a</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>In this study, stimuli‐responsive liberation of an epidermal growth factor fragment (EGFfr) is accomplished using nanofibrous meshes to improve wound healing effects. Electrospun nanofibers are fragmented by mechanical milling, followed by aminolysis to fabricate powdered nanofibrils (NFs). EGFfrs are covalently immobilized on NFs via thioketal linkers (EGFfr@TK@NF) for reactive oxygen species (ROS)–dependent liberation. EGFfr@TK@NF exhibits ROS‐responsive liberation of EGFfr from the matrix at hydrogen peroxide (H2O2) concentrations of 0–250 mm. Released EGFfr is confirmed to enhance the migration of HaCaT cell monolayers, and keratinocytic gene expression levels are significantly enhanced when H2O2 is added to obtain the released fraction of NFs. An in vivo study on the dorsal wounds of mice reveals that EGFfr‐immobilized NFs improve the expression levels of keratin1, 5, and 14 for 2 weeks when H2O2 is added to the wound sites, suggesting that the wounded skin is re‐epithelized with the original epidermis. Thus, EGFfrs‐immobilized NFs are anticipated to be potential nanotherapeutics for wound treatment in combination with the conventional disinfection process with H2O2. An ROS‐responsively liberated epidermal growth factor fragment (EGFfr) is synthesized using thioketal‐conjugated in nanofibrous meshes (EGFfr@TK@NF) to enhance wound healing. EGFfr released from EGFfr@TK@NF is dependent on H2O2 concentration. In vitro and in vivo studies confirm that EGFfr@TK@NF increases keratins and collagens gene expression, and the retention of EGFfr on the wounds, suggesting a promising strategy for wound treatment.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37770246</pmid><doi>10.1002/mabi.202300225</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4346-9154</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2024-02, Vol.24 (2), p.e2300225-n/a
issn 1616-5187
1616-5195
language eng
recordid cdi_proquest_miscellaneous_2870993234
source Wiley-Blackwell Read & Publish Collection
subjects Cell migration
Disinfection
Epidermal growth factor
Epidermis
Gene expression
Growth factors
Hydrogen peroxide
In vivo methods and tests
Mechanical milling
nanofiber
Oxygen
Reactive oxygen species
thioketal
Wound healing
title Reactive Oxygen Species (ROS)‐Assisted Nano‐Therapeutics Surface‐Decorated with Epidermal Growth Factor Fragments for Enhanced Wound Healing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactive%20Oxygen%20Species%20(ROS)%E2%80%90Assisted%20Nano%E2%80%90Therapeutics%20Surface%E2%80%90Decorated%20with%20Epidermal%20Growth%20Factor%20Fragments%20for%20Enhanced%20Wound%20Healing&rft.jtitle=Macromolecular%20bioscience&rft.au=Lee,%20Miso&rft.date=2024-02&rft.volume=24&rft.issue=2&rft.spage=e2300225&rft.epage=n/a&rft.pages=e2300225-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.202300225&rft_dat=%3Cproquest_cross%3E2870993234%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3285-a6983596d3cdd533b0dff986a38be62589e712a5c8138ec184044df95c93650d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2926889279&rft_id=info:pmid/37770246&rfr_iscdi=true