Loading…
Reactive Oxygen Species (ROS)‐Assisted Nano‐Therapeutics Surface‐Decorated with Epidermal Growth Factor Fragments for Enhanced Wound Healing
In this study, stimuli‐responsive liberation of an epidermal growth factor fragment (EGFfr) is accomplished using nanofibrous meshes to improve wound healing effects. Electrospun nanofibers are fragmented by mechanical milling, followed by aminolysis to fabricate powdered nanofibrils (NFs). EGFfrs a...
Saved in:
Published in: | Macromolecular bioscience 2024-02, Vol.24 (2), p.e2300225-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3285-a6983596d3cdd533b0dff986a38be62589e712a5c8138ec184044df95c93650d3 |
container_end_page | n/a |
container_issue | 2 |
container_start_page | e2300225 |
container_title | Macromolecular bioscience |
container_volume | 24 |
creator | Lee, Miso Bui, Hoai‐Thuong Duc Pham, Lan Kim, Songrae Yoo, Hyuk Sang |
description | In this study, stimuli‐responsive liberation of an epidermal growth factor fragment (EGFfr) is accomplished using nanofibrous meshes to improve wound healing effects. Electrospun nanofibers are fragmented by mechanical milling, followed by aminolysis to fabricate powdered nanofibrils (NFs). EGFfrs are covalently immobilized on NFs via thioketal linkers (EGFfr@TK@NF) for reactive oxygen species (ROS)–dependent liberation. EGFfr@TK@NF exhibits ROS‐responsive liberation of EGFfr from the matrix at hydrogen peroxide (H2O2) concentrations of 0–250 mm. Released EGFfr is confirmed to enhance the migration of HaCaT cell monolayers, and keratinocytic gene expression levels are significantly enhanced when H2O2 is added to obtain the released fraction of NFs. An in vivo study on the dorsal wounds of mice reveals that EGFfr‐immobilized NFs improve the expression levels of keratin1, 5, and 14 for 2 weeks when H2O2 is added to the wound sites, suggesting that the wounded skin is re‐epithelized with the original epidermis. Thus, EGFfrs‐immobilized NFs are anticipated to be potential nanotherapeutics for wound treatment in combination with the conventional disinfection process with H2O2.
An ROS‐responsively liberated epidermal growth factor fragment (EGFfr) is synthesized using thioketal‐conjugated in nanofibrous meshes (EGFfr@TK@NF) to enhance wound healing. EGFfr released from EGFfr@TK@NF is dependent on H2O2 concentration. In vitro and in vivo studies confirm that EGFfr@TK@NF increases keratins and collagens gene expression, and the retention of EGFfr on the wounds, suggesting a promising strategy for wound treatment. |
doi_str_mv | 10.1002/mabi.202300225 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2870993234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870993234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3285-a6983596d3cdd533b0dff986a38be62589e712a5c8138ec184044df95c93650d3</originalsourceid><addsrcrecordid>eNqFkc9uEzEQxlcIREvhyhFZ4lIOCf6z9trHUJK2UiFSU8Rx5diziavd9WLvkubWR0A8Yp-kjlKCxIXTzDf6zTeWvyx7S_CYYEw_NnrpxhRTlgTlz7JjIogYcaL480Mvi6PsVYy3GJNCKvoyO2JFUWCai-Ps9zVo07ufgOZ32xW0aNGBcRDR6fV88eHh_tckRhd7sOirbn3SN2sIuoOhdyaixRAqbSCNP4PxQe-4jevXaNo5C6HRNToPfpMGs3TFBzQLetVA20dUJTVt17o1aee7H1qLLkDXrl29zl5Uuo7w5qmeZN9m05uzi9HV_PzybHI1MoxKPtJCScaVsMxYyxlbYltVSgrN5BIE5VJBQajmRhImwRCZ4zy3leJGMcGxZSfZ6d63C_7HALEvGxcN1LVuwQ-xpLLASjHK8oS-_we99UNo0-tKqqiQ6VcLlajxnjLBxxigKrvgGh22JcHlLq1yl1Z5SCstvHuyHZYN2AP-J54EqD2wcTVs_2NXfpl8uvxr_gh-DqQ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926889279</pqid></control><display><type>article</type><title>Reactive Oxygen Species (ROS)‐Assisted Nano‐Therapeutics Surface‐Decorated with Epidermal Growth Factor Fragments for Enhanced Wound Healing</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lee, Miso ; Bui, Hoai‐Thuong Duc ; Pham, Lan ; Kim, Songrae ; Yoo, Hyuk Sang</creator><creatorcontrib>Lee, Miso ; Bui, Hoai‐Thuong Duc ; Pham, Lan ; Kim, Songrae ; Yoo, Hyuk Sang</creatorcontrib><description>In this study, stimuli‐responsive liberation of an epidermal growth factor fragment (EGFfr) is accomplished using nanofibrous meshes to improve wound healing effects. Electrospun nanofibers are fragmented by mechanical milling, followed by aminolysis to fabricate powdered nanofibrils (NFs). EGFfrs are covalently immobilized on NFs via thioketal linkers (EGFfr@TK@NF) for reactive oxygen species (ROS)–dependent liberation. EGFfr@TK@NF exhibits ROS‐responsive liberation of EGFfr from the matrix at hydrogen peroxide (H2O2) concentrations of 0–250 mm. Released EGFfr is confirmed to enhance the migration of HaCaT cell monolayers, and keratinocytic gene expression levels are significantly enhanced when H2O2 is added to obtain the released fraction of NFs. An in vivo study on the dorsal wounds of mice reveals that EGFfr‐immobilized NFs improve the expression levels of keratin1, 5, and 14 for 2 weeks when H2O2 is added to the wound sites, suggesting that the wounded skin is re‐epithelized with the original epidermis. Thus, EGFfrs‐immobilized NFs are anticipated to be potential nanotherapeutics for wound treatment in combination with the conventional disinfection process with H2O2.
An ROS‐responsively liberated epidermal growth factor fragment (EGFfr) is synthesized using thioketal‐conjugated in nanofibrous meshes (EGFfr@TK@NF) to enhance wound healing. EGFfr released from EGFfr@TK@NF is dependent on H2O2 concentration. In vitro and in vivo studies confirm that EGFfr@TK@NF increases keratins and collagens gene expression, and the retention of EGFfr on the wounds, suggesting a promising strategy for wound treatment.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.202300225</identifier><identifier>PMID: 37770246</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cell migration ; Disinfection ; Epidermal growth factor ; Epidermis ; Gene expression ; Growth factors ; Hydrogen peroxide ; In vivo methods and tests ; Mechanical milling ; nanofiber ; Oxygen ; Reactive oxygen species ; thioketal ; Wound healing</subject><ispartof>Macromolecular bioscience, 2024-02, Vol.24 (2), p.e2300225-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3285-a6983596d3cdd533b0dff986a38be62589e712a5c8138ec184044df95c93650d3</cites><orcidid>0000-0002-4346-9154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37770246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Miso</creatorcontrib><creatorcontrib>Bui, Hoai‐Thuong Duc</creatorcontrib><creatorcontrib>Pham, Lan</creatorcontrib><creatorcontrib>Kim, Songrae</creatorcontrib><creatorcontrib>Yoo, Hyuk Sang</creatorcontrib><title>Reactive Oxygen Species (ROS)‐Assisted Nano‐Therapeutics Surface‐Decorated with Epidermal Growth Factor Fragments for Enhanced Wound Healing</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>In this study, stimuli‐responsive liberation of an epidermal growth factor fragment (EGFfr) is accomplished using nanofibrous meshes to improve wound healing effects. Electrospun nanofibers are fragmented by mechanical milling, followed by aminolysis to fabricate powdered nanofibrils (NFs). EGFfrs are covalently immobilized on NFs via thioketal linkers (EGFfr@TK@NF) for reactive oxygen species (ROS)–dependent liberation. EGFfr@TK@NF exhibits ROS‐responsive liberation of EGFfr from the matrix at hydrogen peroxide (H2O2) concentrations of 0–250 mm. Released EGFfr is confirmed to enhance the migration of HaCaT cell monolayers, and keratinocytic gene expression levels are significantly enhanced when H2O2 is added to obtain the released fraction of NFs. An in vivo study on the dorsal wounds of mice reveals that EGFfr‐immobilized NFs improve the expression levels of keratin1, 5, and 14 for 2 weeks when H2O2 is added to the wound sites, suggesting that the wounded skin is re‐epithelized with the original epidermis. Thus, EGFfrs‐immobilized NFs are anticipated to be potential nanotherapeutics for wound treatment in combination with the conventional disinfection process with H2O2.
An ROS‐responsively liberated epidermal growth factor fragment (EGFfr) is synthesized using thioketal‐conjugated in nanofibrous meshes (EGFfr@TK@NF) to enhance wound healing. EGFfr released from EGFfr@TK@NF is dependent on H2O2 concentration. In vitro and in vivo studies confirm that EGFfr@TK@NF increases keratins and collagens gene expression, and the retention of EGFfr on the wounds, suggesting a promising strategy for wound treatment.</description><subject>Cell migration</subject><subject>Disinfection</subject><subject>Epidermal growth factor</subject><subject>Epidermis</subject><subject>Gene expression</subject><subject>Growth factors</subject><subject>Hydrogen peroxide</subject><subject>In vivo methods and tests</subject><subject>Mechanical milling</subject><subject>nanofiber</subject><subject>Oxygen</subject><subject>Reactive oxygen species</subject><subject>thioketal</subject><subject>Wound healing</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc9uEzEQxlcIREvhyhFZ4lIOCf6z9trHUJK2UiFSU8Rx5diziavd9WLvkubWR0A8Yp-kjlKCxIXTzDf6zTeWvyx7S_CYYEw_NnrpxhRTlgTlz7JjIogYcaL480Mvi6PsVYy3GJNCKvoyO2JFUWCai-Ps9zVo07ufgOZ32xW0aNGBcRDR6fV88eHh_tckRhd7sOirbn3SN2sIuoOhdyaixRAqbSCNP4PxQe-4jevXaNo5C6HRNToPfpMGs3TFBzQLetVA20dUJTVt17o1aee7H1qLLkDXrl29zl5Uuo7w5qmeZN9m05uzi9HV_PzybHI1MoxKPtJCScaVsMxYyxlbYltVSgrN5BIE5VJBQajmRhImwRCZ4zy3leJGMcGxZSfZ6d63C_7HALEvGxcN1LVuwQ-xpLLASjHK8oS-_we99UNo0-tKqqiQ6VcLlajxnjLBxxigKrvgGh22JcHlLq1yl1Z5SCstvHuyHZYN2AP-J54EqD2wcTVs_2NXfpl8uvxr_gh-DqQ4</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Lee, Miso</creator><creator>Bui, Hoai‐Thuong Duc</creator><creator>Pham, Lan</creator><creator>Kim, Songrae</creator><creator>Yoo, Hyuk Sang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4346-9154</orcidid></search><sort><creationdate>202402</creationdate><title>Reactive Oxygen Species (ROS)‐Assisted Nano‐Therapeutics Surface‐Decorated with Epidermal Growth Factor Fragments for Enhanced Wound Healing</title><author>Lee, Miso ; Bui, Hoai‐Thuong Duc ; Pham, Lan ; Kim, Songrae ; Yoo, Hyuk Sang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3285-a6983596d3cdd533b0dff986a38be62589e712a5c8138ec184044df95c93650d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cell migration</topic><topic>Disinfection</topic><topic>Epidermal growth factor</topic><topic>Epidermis</topic><topic>Gene expression</topic><topic>Growth factors</topic><topic>Hydrogen peroxide</topic><topic>In vivo methods and tests</topic><topic>Mechanical milling</topic><topic>nanofiber</topic><topic>Oxygen</topic><topic>Reactive oxygen species</topic><topic>thioketal</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Miso</creatorcontrib><creatorcontrib>Bui, Hoai‐Thuong Duc</creatorcontrib><creatorcontrib>Pham, Lan</creatorcontrib><creatorcontrib>Kim, Songrae</creatorcontrib><creatorcontrib>Yoo, Hyuk Sang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Miso</au><au>Bui, Hoai‐Thuong Duc</au><au>Pham, Lan</au><au>Kim, Songrae</au><au>Yoo, Hyuk Sang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactive Oxygen Species (ROS)‐Assisted Nano‐Therapeutics Surface‐Decorated with Epidermal Growth Factor Fragments for Enhanced Wound Healing</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2024-02</date><risdate>2024</risdate><volume>24</volume><issue>2</issue><spage>e2300225</spage><epage>n/a</epage><pages>e2300225-n/a</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>In this study, stimuli‐responsive liberation of an epidermal growth factor fragment (EGFfr) is accomplished using nanofibrous meshes to improve wound healing effects. Electrospun nanofibers are fragmented by mechanical milling, followed by aminolysis to fabricate powdered nanofibrils (NFs). EGFfrs are covalently immobilized on NFs via thioketal linkers (EGFfr@TK@NF) for reactive oxygen species (ROS)–dependent liberation. EGFfr@TK@NF exhibits ROS‐responsive liberation of EGFfr from the matrix at hydrogen peroxide (H2O2) concentrations of 0–250 mm. Released EGFfr is confirmed to enhance the migration of HaCaT cell monolayers, and keratinocytic gene expression levels are significantly enhanced when H2O2 is added to obtain the released fraction of NFs. An in vivo study on the dorsal wounds of mice reveals that EGFfr‐immobilized NFs improve the expression levels of keratin1, 5, and 14 for 2 weeks when H2O2 is added to the wound sites, suggesting that the wounded skin is re‐epithelized with the original epidermis. Thus, EGFfrs‐immobilized NFs are anticipated to be potential nanotherapeutics for wound treatment in combination with the conventional disinfection process with H2O2.
An ROS‐responsively liberated epidermal growth factor fragment (EGFfr) is synthesized using thioketal‐conjugated in nanofibrous meshes (EGFfr@TK@NF) to enhance wound healing. EGFfr released from EGFfr@TK@NF is dependent on H2O2 concentration. In vitro and in vivo studies confirm that EGFfr@TK@NF increases keratins and collagens gene expression, and the retention of EGFfr on the wounds, suggesting a promising strategy for wound treatment.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37770246</pmid><doi>10.1002/mabi.202300225</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4346-9154</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-5187 |
ispartof | Macromolecular bioscience, 2024-02, Vol.24 (2), p.e2300225-n/a |
issn | 1616-5187 1616-5195 |
language | eng |
recordid | cdi_proquest_miscellaneous_2870993234 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Cell migration Disinfection Epidermal growth factor Epidermis Gene expression Growth factors Hydrogen peroxide In vivo methods and tests Mechanical milling nanofiber Oxygen Reactive oxygen species thioketal Wound healing |
title | Reactive Oxygen Species (ROS)‐Assisted Nano‐Therapeutics Surface‐Decorated with Epidermal Growth Factor Fragments for Enhanced Wound Healing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactive%20Oxygen%20Species%20(ROS)%E2%80%90Assisted%20Nano%E2%80%90Therapeutics%20Surface%E2%80%90Decorated%20with%20Epidermal%20Growth%20Factor%20Fragments%20for%20Enhanced%20Wound%20Healing&rft.jtitle=Macromolecular%20bioscience&rft.au=Lee,%20Miso&rft.date=2024-02&rft.volume=24&rft.issue=2&rft.spage=e2300225&rft.epage=n/a&rft.pages=e2300225-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.202300225&rft_dat=%3Cproquest_cross%3E2870993234%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3285-a6983596d3cdd533b0dff986a38be62589e712a5c8138ec184044df95c93650d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2926889279&rft_id=info:pmid/37770246&rfr_iscdi=true |