Loading…
Experimental analysis of a digital SQUID device at 4.2 K
The application of superconducting rapid single-flux quantum (RSFQ) digital electronics for highly sensitive measurement of magnetic fields can provide significant advantages in the use of conventional analogue SQUIDs, especially in terms of operation speed and dynamic range. Furthermore, utilizing...
Saved in:
Published in: | Superconductor science & technology 2005-08, Vol.18 (8), p.1077-1081 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The application of superconducting rapid single-flux quantum (RSFQ) digital electronics for highly sensitive measurement of magnetic fields can provide significant advantages in the use of conventional analogue SQUIDs, especially in terms of operation speed and dynamic range. Furthermore, utilizing an unconventional generalized single-flux-quantum (SFQ) logic with a bidirectional operation principle allows an additional decrease in effort in superconducting electronics. Our novel fully digital SQUID based on the SFQ technique can be assumed to be operating at frequencies in the gigahertz range corresponding to slew rates of several 109 Phio s-1. We present first experimental results for the proper digital function as a preliminary stage for a digital SQUID magnetometer device. The measurements presented are performed for a reliable low temperature superconductor technology at liquid helium temperature; nevertheless the very low complexity of the superconducting digital circuitry holds promise as regards prospects for a working digital SQUID based on high temperature superconductor technology. |
---|---|
ISSN: | 0953-2048 1361-6668 |
DOI: | 10.1088/0953-2048/18/8/009 |