Loading…
“3-in-1” Hybrid Biocatalysts: Association of Yeast Cells Immobilized in a Sol–Gel Matrix for Determining Sewage Pollution
This study presents a novel ″3-in-1″ hybrid biocatalyst design that combines the individual efficiency of microorganisms while avoiding negative interactions between them. Yeast cells of Ogataea polymorpha VKM Y-2559, Blastobotrys adeninivorans VKM Y-2677, and Debaryomyces hansenii VKM Y-2482 were i...
Saved in:
Published in: | ACS applied materials & interfaces 2023-10, Vol.15 (40), p.47779-47789 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study presents a novel ″3-in-1″ hybrid biocatalyst design that combines the individual efficiency of microorganisms while avoiding negative interactions between them. Yeast cells of Ogataea polymorpha VKM Y-2559, Blastobotrys adeninivorans VKM Y-2677, and Debaryomyces hansenii VKM Y-2482 were immobilized in an organosilicon material by using the sol–gel method, resulting in a hybrid biocatalyst. The catalytic activity of the immobilized microorganism mixture was evaluated by employing it as the bioreceptor element of a biosensor. Optical and scanning electron microscopies were used to examine the morphology of the biohybrid material. Elemental distribution analysis confirmed the encapsulation of yeast cells in a matrix composed of methyltriethoxysilane (MTES) and tetraethoxysilane (TEOS) (85 and 15 vol %, respectively). The resulting heterogeneous biocatalyst exhibited excellent performance in determining the biochemical oxygen demand (BOD) index in real surface water samples, with a sensitivity coefficient of 50 ± 3 × 10–3·min–1, a concentration range of 0.3–31 mg/L, long-term stability for 25 days, and a relative standard deviation of 3.8%. These findings demonstrate the potential of the developed hybrid biocatalyst for effective pollution monitoring and wastewater treatment applications. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.3c09897 |