Loading…
Weighted centroid neural network for edge preserving image compression
An edge preserving image compression algorithm based on an unsupervised competitive neural network is proposed. The proposed neural network, the called weighted centroid neural network (WCNN), utilizes the characteristics of image blocks from edge areas. The mean/residual vector quantization (M/RVQ)...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2001-09, Vol.12 (5), p.1134-1146 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c423t-9dc751b65a4cc57348b6cf066f80eeeb5da1d4932c51d97d52d0f8f5a0a02e133 |
---|---|
cites | cdi_FETCH-LOGICAL-c423t-9dc751b65a4cc57348b6cf066f80eeeb5da1d4932c51d97d52d0f8f5a0a02e133 |
container_end_page | 1146 |
container_issue | 5 |
container_start_page | 1134 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 12 |
creator | Park, D C Woo, Y J |
description | An edge preserving image compression algorithm based on an unsupervised competitive neural network is proposed. The proposed neural network, the called weighted centroid neural network (WCNN), utilizes the characteristics of image blocks from edge areas. The mean/residual vector quantization (M/RVQ) scheme is utilized in this proposed approach as the framework of the proposed algorithm. The edge strength of image block data is utilized as a tool to allocate the proper code vectors in the proposed WCNN. The WCNN successfully allocates more code vectors to the image block data from edge area while it allocates less code vectors to the image black data from shade or non-edge area when compared to conventional neural networks based on VQ algorithm. As a result, a simple application of WCNN to an image compression problem gives improved edge characteristics in reconstructed images over conventional neural network based on VQ algorithms such as self-organizing map (SOM) and adaptive SOM. |
doi_str_mv | 10.1109/72.950142 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_28719278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>950142</ieee_id><sourcerecordid>2583010801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-9dc751b65a4cc57348b6cf066f80eeeb5da1d4932c51d97d52d0f8f5a0a02e133</originalsourceid><addsrcrecordid>eNqF0TtPxDAMB_AIgXgPrAyoYuAxFOw0j2ZEiJeExAJirHqJexTumiNpQXx7gu4EEgNMjuxfPPzN2A7CCSKYU81PjAQUfImtoxGYA5hiOb1ByNxwrtfYRozPkIgEtcrWsOTCGAHr7PKR2vFTTy6z1PXBty7raAj1JJX-3YeXrPEhIzembBYoUnhru3HWTuvUsH761Yut77bYSlNPIm0v6iZ7uLy4P7_Ob--ubs7PbnMreNHnxlktcaRkLayVuhDlSNkGlGpKIKKRdDU6YQpuJTqjneQOmrKRNdTACYtikx3O986Cfx0o9tW0jZYmk7ojP8QqreQyZYJJHvwpeanRcF3-DzVgmUJM8OhPiEpjYbQ0OtH9X_TZD6FLyVSGQ6m0Eiqh4zmywccYqKlmIQUbPiqE6uuulebV_K7J7i0WDqMpuR-5OGQCu3PQphy_x4vfn-t8o6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920867646</pqid></control><display><type>article</type><title>Weighted centroid neural network for edge preserving image compression</title><source>IEEE Xplore (Online service)</source><creator>Park, D C ; Woo, Y J</creator><creatorcontrib>Park, D C ; Woo, Y J</creatorcontrib><description>An edge preserving image compression algorithm based on an unsupervised competitive neural network is proposed. The proposed neural network, the called weighted centroid neural network (WCNN), utilizes the characteristics of image blocks from edge areas. The mean/residual vector quantization (M/RVQ) scheme is utilized in this proposed approach as the framework of the proposed algorithm. The edge strength of image block data is utilized as a tool to allocate the proper code vectors in the proposed WCNN. The WCNN successfully allocates more code vectors to the image block data from edge area while it allocates less code vectors to the image black data from shade or non-edge area when compared to conventional neural networks based on VQ algorithm. As a result, a simple application of WCNN to an image compression problem gives improved edge characteristics in reconstructed images over conventional neural network based on VQ algorithms such as self-organizing map (SOM) and adaptive SOM.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/72.950142</identifier><identifier>PMID: 18249940</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Bit rate ; Centroids ; Decoding ; Degradation ; Distortion measurement ; Image coding ; Image compression ; Image reconstruction ; Mathematical analysis ; Neural networks ; Preserving ; Studies ; Transform coding ; Unsupervised learning ; Vector quantization ; Vectors (mathematics)</subject><ispartof>IEEE transaction on neural networks and learning systems, 2001-09, Vol.12 (5), p.1134-1146</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-9dc751b65a4cc57348b6cf066f80eeeb5da1d4932c51d97d52d0f8f5a0a02e133</citedby><cites>FETCH-LOGICAL-c423t-9dc751b65a4cc57348b6cf066f80eeeb5da1d4932c51d97d52d0f8f5a0a02e133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/950142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18249940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, D C</creatorcontrib><creatorcontrib>Woo, Y J</creatorcontrib><title>Weighted centroid neural network for edge preserving image compression</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>An edge preserving image compression algorithm based on an unsupervised competitive neural network is proposed. The proposed neural network, the called weighted centroid neural network (WCNN), utilizes the characteristics of image blocks from edge areas. The mean/residual vector quantization (M/RVQ) scheme is utilized in this proposed approach as the framework of the proposed algorithm. The edge strength of image block data is utilized as a tool to allocate the proper code vectors in the proposed WCNN. The WCNN successfully allocates more code vectors to the image block data from edge area while it allocates less code vectors to the image black data from shade or non-edge area when compared to conventional neural networks based on VQ algorithm. As a result, a simple application of WCNN to an image compression problem gives improved edge characteristics in reconstructed images over conventional neural network based on VQ algorithms such as self-organizing map (SOM) and adaptive SOM.</description><subject>Algorithms</subject><subject>Bit rate</subject><subject>Centroids</subject><subject>Decoding</subject><subject>Degradation</subject><subject>Distortion measurement</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image reconstruction</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Preserving</subject><subject>Studies</subject><subject>Transform coding</subject><subject>Unsupervised learning</subject><subject>Vector quantization</subject><subject>Vectors (mathematics)</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqF0TtPxDAMB_AIgXgPrAyoYuAxFOw0j2ZEiJeExAJirHqJexTumiNpQXx7gu4EEgNMjuxfPPzN2A7CCSKYU81PjAQUfImtoxGYA5hiOb1ByNxwrtfYRozPkIgEtcrWsOTCGAHr7PKR2vFTTy6z1PXBty7raAj1JJX-3YeXrPEhIzembBYoUnhru3HWTuvUsH761Yut77bYSlNPIm0v6iZ7uLy4P7_Ob--ubs7PbnMreNHnxlktcaRkLayVuhDlSNkGlGpKIKKRdDU6YQpuJTqjneQOmrKRNdTACYtikx3O986Cfx0o9tW0jZYmk7ojP8QqreQyZYJJHvwpeanRcF3-DzVgmUJM8OhPiEpjYbQ0OtH9X_TZD6FLyVSGQ6m0Eiqh4zmywccYqKlmIQUbPiqE6uuulebV_K7J7i0WDqMpuR-5OGQCu3PQphy_x4vfn-t8o6Q</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Park, D C</creator><creator>Woo, Y J</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010901</creationdate><title>Weighted centroid neural network for edge preserving image compression</title><author>Park, D C ; Woo, Y J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-9dc751b65a4cc57348b6cf066f80eeeb5da1d4932c51d97d52d0f8f5a0a02e133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Bit rate</topic><topic>Centroids</topic><topic>Decoding</topic><topic>Degradation</topic><topic>Distortion measurement</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image reconstruction</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Preserving</topic><topic>Studies</topic><topic>Transform coding</topic><topic>Unsupervised learning</topic><topic>Vector quantization</topic><topic>Vectors (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, D C</creatorcontrib><creatorcontrib>Woo, Y J</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, D C</au><au>Woo, Y J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted centroid neural network for edge preserving image compression</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2001-09-01</date><risdate>2001</risdate><volume>12</volume><issue>5</issue><spage>1134</spage><epage>1146</epage><pages>1134-1146</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>An edge preserving image compression algorithm based on an unsupervised competitive neural network is proposed. The proposed neural network, the called weighted centroid neural network (WCNN), utilizes the characteristics of image blocks from edge areas. The mean/residual vector quantization (M/RVQ) scheme is utilized in this proposed approach as the framework of the proposed algorithm. The edge strength of image block data is utilized as a tool to allocate the proper code vectors in the proposed WCNN. The WCNN successfully allocates more code vectors to the image block data from edge area while it allocates less code vectors to the image black data from shade or non-edge area when compared to conventional neural networks based on VQ algorithm. As a result, a simple application of WCNN to an image compression problem gives improved edge characteristics in reconstructed images over conventional neural network based on VQ algorithms such as self-organizing map (SOM) and adaptive SOM.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18249940</pmid><doi>10.1109/72.950142</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-9227 |
ispartof | IEEE transaction on neural networks and learning systems, 2001-09, Vol.12 (5), p.1134-1146 |
issn | 1045-9227 2162-237X 1941-0093 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_28719278 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Bit rate Centroids Decoding Degradation Distortion measurement Image coding Image compression Image reconstruction Mathematical analysis Neural networks Preserving Studies Transform coding Unsupervised learning Vector quantization Vectors (mathematics) |
title | Weighted centroid neural network for edge preserving image compression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20centroid%20neural%20network%20for%20edge%20preserving%20image%20compression&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Park,%20D%20C&rft.date=2001-09-01&rft.volume=12&rft.issue=5&rft.spage=1134&rft.epage=1146&rft.pages=1134-1146&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.950142&rft_dat=%3Cproquest_pubme%3E2583010801%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-9dc751b65a4cc57348b6cf066f80eeeb5da1d4932c51d97d52d0f8f5a0a02e133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920867646&rft_id=info:pmid/18249940&rft_ieee_id=950142&rfr_iscdi=true |