Loading…

Weighted centroid neural network for edge preserving image compression

An edge preserving image compression algorithm based on an unsupervised competitive neural network is proposed. The proposed neural network, the called weighted centroid neural network (WCNN), utilizes the characteristics of image blocks from edge areas. The mean/residual vector quantization (M/RVQ)...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2001-09, Vol.12 (5), p.1134-1146
Main Authors: Park, D C, Woo, Y J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-9dc751b65a4cc57348b6cf066f80eeeb5da1d4932c51d97d52d0f8f5a0a02e133
cites cdi_FETCH-LOGICAL-c423t-9dc751b65a4cc57348b6cf066f80eeeb5da1d4932c51d97d52d0f8f5a0a02e133
container_end_page 1146
container_issue 5
container_start_page 1134
container_title IEEE transaction on neural networks and learning systems
container_volume 12
creator Park, D C
Woo, Y J
description An edge preserving image compression algorithm based on an unsupervised competitive neural network is proposed. The proposed neural network, the called weighted centroid neural network (WCNN), utilizes the characteristics of image blocks from edge areas. The mean/residual vector quantization (M/RVQ) scheme is utilized in this proposed approach as the framework of the proposed algorithm. The edge strength of image block data is utilized as a tool to allocate the proper code vectors in the proposed WCNN. The WCNN successfully allocates more code vectors to the image block data from edge area while it allocates less code vectors to the image black data from shade or non-edge area when compared to conventional neural networks based on VQ algorithm. As a result, a simple application of WCNN to an image compression problem gives improved edge characteristics in reconstructed images over conventional neural network based on VQ algorithms such as self-organizing map (SOM) and adaptive SOM.
doi_str_mv 10.1109/72.950142
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_28719278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>950142</ieee_id><sourcerecordid>2583010801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-9dc751b65a4cc57348b6cf066f80eeeb5da1d4932c51d97d52d0f8f5a0a02e133</originalsourceid><addsrcrecordid>eNqF0TtPxDAMB_AIgXgPrAyoYuAxFOw0j2ZEiJeExAJirHqJexTumiNpQXx7gu4EEgNMjuxfPPzN2A7CCSKYU81PjAQUfImtoxGYA5hiOb1ByNxwrtfYRozPkIgEtcrWsOTCGAHr7PKR2vFTTy6z1PXBty7raAj1JJX-3YeXrPEhIzembBYoUnhru3HWTuvUsH761Yut77bYSlNPIm0v6iZ7uLy4P7_Ob--ubs7PbnMreNHnxlktcaRkLayVuhDlSNkGlGpKIKKRdDU6YQpuJTqjneQOmrKRNdTACYtikx3O986Cfx0o9tW0jZYmk7ojP8QqreQyZYJJHvwpeanRcF3-DzVgmUJM8OhPiEpjYbQ0OtH9X_TZD6FLyVSGQ6m0Eiqh4zmywccYqKlmIQUbPiqE6uuulebV_K7J7i0WDqMpuR-5OGQCu3PQphy_x4vfn-t8o6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920867646</pqid></control><display><type>article</type><title>Weighted centroid neural network for edge preserving image compression</title><source>IEEE Xplore (Online service)</source><creator>Park, D C ; Woo, Y J</creator><creatorcontrib>Park, D C ; Woo, Y J</creatorcontrib><description>An edge preserving image compression algorithm based on an unsupervised competitive neural network is proposed. The proposed neural network, the called weighted centroid neural network (WCNN), utilizes the characteristics of image blocks from edge areas. The mean/residual vector quantization (M/RVQ) scheme is utilized in this proposed approach as the framework of the proposed algorithm. The edge strength of image block data is utilized as a tool to allocate the proper code vectors in the proposed WCNN. The WCNN successfully allocates more code vectors to the image block data from edge area while it allocates less code vectors to the image black data from shade or non-edge area when compared to conventional neural networks based on VQ algorithm. As a result, a simple application of WCNN to an image compression problem gives improved edge characteristics in reconstructed images over conventional neural network based on VQ algorithms such as self-organizing map (SOM) and adaptive SOM.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/72.950142</identifier><identifier>PMID: 18249940</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Bit rate ; Centroids ; Decoding ; Degradation ; Distortion measurement ; Image coding ; Image compression ; Image reconstruction ; Mathematical analysis ; Neural networks ; Preserving ; Studies ; Transform coding ; Unsupervised learning ; Vector quantization ; Vectors (mathematics)</subject><ispartof>IEEE transaction on neural networks and learning systems, 2001-09, Vol.12 (5), p.1134-1146</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-9dc751b65a4cc57348b6cf066f80eeeb5da1d4932c51d97d52d0f8f5a0a02e133</citedby><cites>FETCH-LOGICAL-c423t-9dc751b65a4cc57348b6cf066f80eeeb5da1d4932c51d97d52d0f8f5a0a02e133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/950142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18249940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, D C</creatorcontrib><creatorcontrib>Woo, Y J</creatorcontrib><title>Weighted centroid neural network for edge preserving image compression</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>An edge preserving image compression algorithm based on an unsupervised competitive neural network is proposed. The proposed neural network, the called weighted centroid neural network (WCNN), utilizes the characteristics of image blocks from edge areas. The mean/residual vector quantization (M/RVQ) scheme is utilized in this proposed approach as the framework of the proposed algorithm. The edge strength of image block data is utilized as a tool to allocate the proper code vectors in the proposed WCNN. The WCNN successfully allocates more code vectors to the image block data from edge area while it allocates less code vectors to the image black data from shade or non-edge area when compared to conventional neural networks based on VQ algorithm. As a result, a simple application of WCNN to an image compression problem gives improved edge characteristics in reconstructed images over conventional neural network based on VQ algorithms such as self-organizing map (SOM) and adaptive SOM.</description><subject>Algorithms</subject><subject>Bit rate</subject><subject>Centroids</subject><subject>Decoding</subject><subject>Degradation</subject><subject>Distortion measurement</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image reconstruction</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Preserving</subject><subject>Studies</subject><subject>Transform coding</subject><subject>Unsupervised learning</subject><subject>Vector quantization</subject><subject>Vectors (mathematics)</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqF0TtPxDAMB_AIgXgPrAyoYuAxFOw0j2ZEiJeExAJirHqJexTumiNpQXx7gu4EEgNMjuxfPPzN2A7CCSKYU81PjAQUfImtoxGYA5hiOb1ByNxwrtfYRozPkIgEtcrWsOTCGAHr7PKR2vFTTy6z1PXBty7raAj1JJX-3YeXrPEhIzembBYoUnhru3HWTuvUsH761Yut77bYSlNPIm0v6iZ7uLy4P7_Ob--ubs7PbnMreNHnxlktcaRkLayVuhDlSNkGlGpKIKKRdDU6YQpuJTqjneQOmrKRNdTACYtikx3O986Cfx0o9tW0jZYmk7ojP8QqreQyZYJJHvwpeanRcF3-DzVgmUJM8OhPiEpjYbQ0OtH9X_TZD6FLyVSGQ6m0Eiqh4zmywccYqKlmIQUbPiqE6uuulebV_K7J7i0WDqMpuR-5OGQCu3PQphy_x4vfn-t8o6Q</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Park, D C</creator><creator>Woo, Y J</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010901</creationdate><title>Weighted centroid neural network for edge preserving image compression</title><author>Park, D C ; Woo, Y J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-9dc751b65a4cc57348b6cf066f80eeeb5da1d4932c51d97d52d0f8f5a0a02e133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Bit rate</topic><topic>Centroids</topic><topic>Decoding</topic><topic>Degradation</topic><topic>Distortion measurement</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image reconstruction</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Preserving</topic><topic>Studies</topic><topic>Transform coding</topic><topic>Unsupervised learning</topic><topic>Vector quantization</topic><topic>Vectors (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, D C</creatorcontrib><creatorcontrib>Woo, Y J</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, D C</au><au>Woo, Y J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted centroid neural network for edge preserving image compression</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2001-09-01</date><risdate>2001</risdate><volume>12</volume><issue>5</issue><spage>1134</spage><epage>1146</epage><pages>1134-1146</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>An edge preserving image compression algorithm based on an unsupervised competitive neural network is proposed. The proposed neural network, the called weighted centroid neural network (WCNN), utilizes the characteristics of image blocks from edge areas. The mean/residual vector quantization (M/RVQ) scheme is utilized in this proposed approach as the framework of the proposed algorithm. The edge strength of image block data is utilized as a tool to allocate the proper code vectors in the proposed WCNN. The WCNN successfully allocates more code vectors to the image block data from edge area while it allocates less code vectors to the image black data from shade or non-edge area when compared to conventional neural networks based on VQ algorithm. As a result, a simple application of WCNN to an image compression problem gives improved edge characteristics in reconstructed images over conventional neural network based on VQ algorithms such as self-organizing map (SOM) and adaptive SOM.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18249940</pmid><doi>10.1109/72.950142</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2001-09, Vol.12 (5), p.1134-1146
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_proquest_miscellaneous_28719278
source IEEE Xplore (Online service)
subjects Algorithms
Bit rate
Centroids
Decoding
Degradation
Distortion measurement
Image coding
Image compression
Image reconstruction
Mathematical analysis
Neural networks
Preserving
Studies
Transform coding
Unsupervised learning
Vector quantization
Vectors (mathematics)
title Weighted centroid neural network for edge preserving image compression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20centroid%20neural%20network%20for%20edge%20preserving%20image%20compression&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Park,%20D%20C&rft.date=2001-09-01&rft.volume=12&rft.issue=5&rft.spage=1134&rft.epage=1146&rft.pages=1134-1146&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.950142&rft_dat=%3Cproquest_pubme%3E2583010801%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-9dc751b65a4cc57348b6cf066f80eeeb5da1d4932c51d97d52d0f8f5a0a02e133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920867646&rft_id=info:pmid/18249940&rft_ieee_id=950142&rfr_iscdi=true