Loading…
Interfacial Modification of a Zn Anode by Amorphous Se toward Long-Life and Hydrogen Evolution-Free Aqueous Rechargeable Batteries
The Zn anode in rechargeable aqueous Zn-ion batteries suffers from hydrogen gas evolution and dendrite growth, which are critical issues that make the battery impractical. Here, the Zn anode performance is greatly improved by coating an amorphous selenium overlayer with a simple chemical bath reacti...
Saved in:
Published in: | ACS applied materials & interfaces 2023-10, Vol.15 (41), p.48225-48234 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Zn anode in rechargeable aqueous Zn-ion batteries suffers from hydrogen gas evolution and dendrite growth, which are critical issues that make the battery impractical. Here, the Zn anode performance is greatly improved by coating an amorphous selenium overlayer with a simple chemical bath reaction process. The reduction of SeO3 2– ions by the Zn metal leads to the formation of an amorphous Se layer, and the optimal reaction time that determines the thickness of the Se coating as well as the Zn anode performance is found to be 2 h. The symmetric cell using Zn@Se exhibits improved rate performance and an ultralong cycle life of 4500 h after being tested at 1 mA cm–2 and 1 mAh cm–2, respectively. Compared to the bare Zn anode, the Zn@Se anode leads to a larger Zn2+ transference number and reduced charge transfer resistance. The button-type MnO2∥Zn@Se full cell exhibits higher capacity and a much longer cycle life compared to the counterpart using a bare Zn anode. Also, pouch-type MnO2∥Zn@Se full cells with a high capacity of 9.7 mAh cm–2 are made to demonstrate the inhibition of hydrogen evolution and practical applications. It is found that the in situ formation of an amorphous ZnO nanosheet network induced by the amorphous Se overlayer plays a key role in enhancing the Zn anode performance. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.3c10691 |