Loading…
Microstructural dependence of giant-magnetoresistance in electrodeposited Cu-Co alloys
The relationship between the microstructure and the magnetic properties of heterogeneous Cu-Co [Cu92.5-Co7.5] (at.%) thin films prepared by electrodeposition was studied. Electron spectroscopic imaging (ESI) studies clearly revealed the evolution of the cobalt microstructure as a function of thermal...
Saved in:
Published in: | Journal of materials science 2004-09, Vol.39 (18), p.5701-5709 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-22f54f6d2218fec3592c7594fe449333c3ac31a6dc00da4a8f37e21f408bf8453 |
---|---|
cites | |
container_end_page | 5709 |
container_issue | 18 |
container_start_page | 5701 |
container_title | Journal of materials science |
container_volume | 39 |
creator | COHEN-HYAMS, T PLITZKO, J. M HETHERINGTON, C. J. D HUTCHISON, J. L YAHALOM, J KAPLAN, W. D |
description | The relationship between the microstructure and the magnetic properties of heterogeneous Cu-Co [Cu92.5-Co7.5] (at.%) thin films prepared by electrodeposition was studied. Electron spectroscopic imaging (ESI) studies clearly revealed the evolution of the cobalt microstructure as a function of thermal treatments. The as-deposited film is composed of more than one phase; metastable Cu-Co, copper and cobalt. During annealing the metastable phase decomposes into two fcc phases; Cu and Co. Grain growth occurs with increasing annealing duration, such that the cobalt grains are more homogeneously distributed in the copper matrix. A maximum GMR effect was found after annealing at 450°C for 1.5 h, which corresponds to an average cobalt grain size of 5.5 nm according to magnetization characterization. A significant fraction of the cobalt in the Cu-Co film did not contribute to the GMR effect, due to interactions between the different magnetic grains and large ferromagnetic (FM) grains. The percolation threshold of cobalt in metastable Cu-Co alloys formed by electrodeposition is lower (less than ∼7.5 at.%) than that prepared by physical deposition methods (∼35 at.%). |
doi_str_mv | 10.1023/B:JMSC.0000040079.41985.6b |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28729572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28230181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-22f54f6d2218fec3592c7594fe449333c3ac31a6dc00da4a8f37e21f408bf8453</originalsourceid><addsrcrecordid>eNqNkUlPwzAQhS0EEmX5DxEIbine43CjEatacWC5Wq4zroLSuNjOgX9PApUqcWIuc5hvZvTeQ-iM4CnBlF3Nrp8WL9UUj8UxLsopJ6USU7ncQxMiCpZzhdk-mmBMaU65JIfoKMaPARcFJRP0vmhs8DGF3qY-mDarYQNdDZ2FzLts1Zgu5Wuz6iD5ALGJyYyjpsugBZuCH3gfmwR1VvV55TPTtv4rnqADZ9oIp9t-jN7ubl-rh3z-fP9Y3cxzyxRJOaVOcCdrSolyYJkoqS1EyR1wXjLGLDOWESNri3FtuFGOFUCJ41gtneKCHaPL37ub4D97iEmvm2ihbU0Hvo-aqoKWg9J_gJRhosgAnv8BP3wfukGEplSUUnEi5UBd_1KjeTGA05vQrE340gTrMRk902MyepeM_klGy-WwfLF9YaI1rQuDpU3cXZCECSIL9g1Rwo9_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259684166</pqid></control><display><type>article</type><title>Microstructural dependence of giant-magnetoresistance in electrodeposited Cu-Co alloys</title><source>Springer Nature</source><creator>COHEN-HYAMS, T ; PLITZKO, J. M ; HETHERINGTON, C. J. D ; HUTCHISON, J. L ; YAHALOM, J ; KAPLAN, W. D</creator><creatorcontrib>COHEN-HYAMS, T ; PLITZKO, J. M ; HETHERINGTON, C. J. D ; HUTCHISON, J. L ; YAHALOM, J ; KAPLAN, W. D</creatorcontrib><description>The relationship between the microstructure and the magnetic properties of heterogeneous Cu-Co [Cu92.5-Co7.5] (at.%) thin films prepared by electrodeposition was studied. Electron spectroscopic imaging (ESI) studies clearly revealed the evolution of the cobalt microstructure as a function of thermal treatments. The as-deposited film is composed of more than one phase; metastable Cu-Co, copper and cobalt. During annealing the metastable phase decomposes into two fcc phases; Cu and Co. Grain growth occurs with increasing annealing duration, such that the cobalt grains are more homogeneously distributed in the copper matrix. A maximum GMR effect was found after annealing at 450°C for 1.5 h, which corresponds to an average cobalt grain size of 5.5 nm according to magnetization characterization. A significant fraction of the cobalt in the Cu-Co film did not contribute to the GMR effect, due to interactions between the different magnetic grains and large ferromagnetic (FM) grains. The percolation threshold of cobalt in metastable Cu-Co alloys formed by electrodeposition is lower (less than ∼7.5 at.%) than that prepared by physical deposition methods (∼35 at.%).</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1023/B:JMSC.0000040079.41985.6b</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Annealing ; Applied sciences ; Cobalt base alloys ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Copper ; Copper base alloys ; Cross-disciplinary physics: materials science; rheology ; Dependence ; Electrodeposition ; Electrodeposition, electroplating ; Exact sciences and technology ; Ferromagnetism ; Giant magnetoresistance ; Grain growth ; Grain size ; Magnetic properties ; Magnetic properties and materials ; Magnetism ; Magnetoresistance ; Magnetoresistivity ; Magnetotransport phenomena, materials for magnetotransport ; Materials science ; Metals. Metallurgy ; Metastable phases ; Methods of deposition of films and coatings; film growth and epitaxy ; Microstructure ; Percolation ; Physics ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Thin films</subject><ispartof>Journal of materials science, 2004-09, Vol.39 (18), p.5701-5709</ispartof><rights>2004 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2004). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-22f54f6d2218fec3592c7594fe449333c3ac31a6dc00da4a8f37e21f408bf8453</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16135167$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>COHEN-HYAMS, T</creatorcontrib><creatorcontrib>PLITZKO, J. M</creatorcontrib><creatorcontrib>HETHERINGTON, C. J. D</creatorcontrib><creatorcontrib>HUTCHISON, J. L</creatorcontrib><creatorcontrib>YAHALOM, J</creatorcontrib><creatorcontrib>KAPLAN, W. D</creatorcontrib><title>Microstructural dependence of giant-magnetoresistance in electrodeposited Cu-Co alloys</title><title>Journal of materials science</title><description>The relationship between the microstructure and the magnetic properties of heterogeneous Cu-Co [Cu92.5-Co7.5] (at.%) thin films prepared by electrodeposition was studied. Electron spectroscopic imaging (ESI) studies clearly revealed the evolution of the cobalt microstructure as a function of thermal treatments. The as-deposited film is composed of more than one phase; metastable Cu-Co, copper and cobalt. During annealing the metastable phase decomposes into two fcc phases; Cu and Co. Grain growth occurs with increasing annealing duration, such that the cobalt grains are more homogeneously distributed in the copper matrix. A maximum GMR effect was found after annealing at 450°C for 1.5 h, which corresponds to an average cobalt grain size of 5.5 nm according to magnetization characterization. A significant fraction of the cobalt in the Cu-Co film did not contribute to the GMR effect, due to interactions between the different magnetic grains and large ferromagnetic (FM) grains. The percolation threshold of cobalt in metastable Cu-Co alloys formed by electrodeposition is lower (less than ∼7.5 at.%) than that prepared by physical deposition methods (∼35 at.%).</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>Cobalt base alloys</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dependence</subject><subject>Electrodeposition</subject><subject>Electrodeposition, electroplating</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetism</subject><subject>Giant magnetoresistance</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Magnetic properties</subject><subject>Magnetic properties and materials</subject><subject>Magnetism</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Magnetotransport phenomena, materials for magnetotransport</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Metastable phases</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microstructure</subject><subject>Percolation</subject><subject>Physics</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Thin films</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkUlPwzAQhS0EEmX5DxEIbine43CjEatacWC5Wq4zroLSuNjOgX9PApUqcWIuc5hvZvTeQ-iM4CnBlF3Nrp8WL9UUj8UxLsopJ6USU7ncQxMiCpZzhdk-mmBMaU65JIfoKMaPARcFJRP0vmhs8DGF3qY-mDarYQNdDZ2FzLts1Zgu5Wuz6iD5ALGJyYyjpsugBZuCH3gfmwR1VvV55TPTtv4rnqADZ9oIp9t-jN7ubl-rh3z-fP9Y3cxzyxRJOaVOcCdrSolyYJkoqS1EyR1wXjLGLDOWESNri3FtuFGOFUCJ41gtneKCHaPL37ub4D97iEmvm2ihbU0Hvo-aqoKWg9J_gJRhosgAnv8BP3wfukGEplSUUnEi5UBd_1KjeTGA05vQrE340gTrMRk902MyepeM_klGy-WwfLF9YaI1rQuDpU3cXZCECSIL9g1Rwo9_</recordid><startdate>20040915</startdate><enddate>20040915</enddate><creator>COHEN-HYAMS, T</creator><creator>PLITZKO, J. M</creator><creator>HETHERINGTON, C. J. D</creator><creator>HUTCHISON, J. L</creator><creator>YAHALOM, J</creator><creator>KAPLAN, W. D</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope><scope>H8D</scope></search><sort><creationdate>20040915</creationdate><title>Microstructural dependence of giant-magnetoresistance in electrodeposited Cu-Co alloys</title><author>COHEN-HYAMS, T ; PLITZKO, J. M ; HETHERINGTON, C. J. D ; HUTCHISON, J. L ; YAHALOM, J ; KAPLAN, W. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-22f54f6d2218fec3592c7594fe449333c3ac31a6dc00da4a8f37e21f408bf8453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>Cobalt base alloys</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dependence</topic><topic>Electrodeposition</topic><topic>Electrodeposition, electroplating</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetism</topic><topic>Giant magnetoresistance</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Magnetic properties</topic><topic>Magnetic properties and materials</topic><topic>Magnetism</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Magnetotransport phenomena, materials for magnetotransport</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Metastable phases</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microstructure</topic><topic>Percolation</topic><topic>Physics</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COHEN-HYAMS, T</creatorcontrib><creatorcontrib>PLITZKO, J. M</creatorcontrib><creatorcontrib>HETHERINGTON, C. J. D</creatorcontrib><creatorcontrib>HUTCHISON, J. L</creatorcontrib><creatorcontrib>YAHALOM, J</creatorcontrib><creatorcontrib>KAPLAN, W. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COHEN-HYAMS, T</au><au>PLITZKO, J. M</au><au>HETHERINGTON, C. J. D</au><au>HUTCHISON, J. L</au><au>YAHALOM, J</au><au>KAPLAN, W. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural dependence of giant-magnetoresistance in electrodeposited Cu-Co alloys</atitle><jtitle>Journal of materials science</jtitle><date>2004-09-15</date><risdate>2004</risdate><volume>39</volume><issue>18</issue><spage>5701</spage><epage>5709</epage><pages>5701-5709</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>The relationship between the microstructure and the magnetic properties of heterogeneous Cu-Co [Cu92.5-Co7.5] (at.%) thin films prepared by electrodeposition was studied. Electron spectroscopic imaging (ESI) studies clearly revealed the evolution of the cobalt microstructure as a function of thermal treatments. The as-deposited film is composed of more than one phase; metastable Cu-Co, copper and cobalt. During annealing the metastable phase decomposes into two fcc phases; Cu and Co. Grain growth occurs with increasing annealing duration, such that the cobalt grains are more homogeneously distributed in the copper matrix. A maximum GMR effect was found after annealing at 450°C for 1.5 h, which corresponds to an average cobalt grain size of 5.5 nm according to magnetization characterization. A significant fraction of the cobalt in the Cu-Co film did not contribute to the GMR effect, due to interactions between the different magnetic grains and large ferromagnetic (FM) grains. The percolation threshold of cobalt in metastable Cu-Co alloys formed by electrodeposition is lower (less than ∼7.5 at.%) than that prepared by physical deposition methods (∼35 at.%).</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/B:JMSC.0000040079.41985.6b</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2004-09, Vol.39 (18), p.5701-5709 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_28729572 |
source | Springer Nature |
subjects | Annealing Applied sciences Cobalt base alloys Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Copper Copper base alloys Cross-disciplinary physics: materials science rheology Dependence Electrodeposition Electrodeposition, electroplating Exact sciences and technology Ferromagnetism Giant magnetoresistance Grain growth Grain size Magnetic properties Magnetic properties and materials Magnetism Magnetoresistance Magnetoresistivity Magnetotransport phenomena, materials for magnetotransport Materials science Metals. Metallurgy Metastable phases Methods of deposition of films and coatings film growth and epitaxy Microstructure Percolation Physics Structure and morphology thickness Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thin film structure and morphology Thin films |
title | Microstructural dependence of giant-magnetoresistance in electrodeposited Cu-Co alloys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20dependence%20of%20giant-magnetoresistance%20in%20electrodeposited%20Cu-Co%20alloys&rft.jtitle=Journal%20of%20materials%20science&rft.au=COHEN-HYAMS,%20T&rft.date=2004-09-15&rft.volume=39&rft.issue=18&rft.spage=5701&rft.epage=5709&rft.pages=5701-5709&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1023/B:JMSC.0000040079.41985.6b&rft_dat=%3Cproquest_cross%3E28230181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-22f54f6d2218fec3592c7594fe449333c3ac31a6dc00da4a8f37e21f408bf8453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259684166&rft_id=info:pmid/&rfr_iscdi=true |