Loading…

Microstructural dependence of giant-magnetoresistance in electrodeposited Cu-Co alloys

The relationship between the microstructure and the magnetic properties of heterogeneous Cu-Co [Cu92.5-Co7.5] (at.%) thin films prepared by electrodeposition was studied. Electron spectroscopic imaging (ESI) studies clearly revealed the evolution of the cobalt microstructure as a function of thermal...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2004-09, Vol.39 (18), p.5701-5709
Main Authors: COHEN-HYAMS, T, PLITZKO, J. M, HETHERINGTON, C. J. D, HUTCHISON, J. L, YAHALOM, J, KAPLAN, W. D
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-22f54f6d2218fec3592c7594fe449333c3ac31a6dc00da4a8f37e21f408bf8453
cites
container_end_page 5709
container_issue 18
container_start_page 5701
container_title Journal of materials science
container_volume 39
creator COHEN-HYAMS, T
PLITZKO, J. M
HETHERINGTON, C. J. D
HUTCHISON, J. L
YAHALOM, J
KAPLAN, W. D
description The relationship between the microstructure and the magnetic properties of heterogeneous Cu-Co [Cu92.5-Co7.5] (at.%) thin films prepared by electrodeposition was studied. Electron spectroscopic imaging (ESI) studies clearly revealed the evolution of the cobalt microstructure as a function of thermal treatments. The as-deposited film is composed of more than one phase; metastable Cu-Co, copper and cobalt. During annealing the metastable phase decomposes into two fcc phases; Cu and Co. Grain growth occurs with increasing annealing duration, such that the cobalt grains are more homogeneously distributed in the copper matrix. A maximum GMR effect was found after annealing at 450°C for 1.5 h, which corresponds to an average cobalt grain size of 5.5 nm according to magnetization characterization. A significant fraction of the cobalt in the Cu-Co film did not contribute to the GMR effect, due to interactions between the different magnetic grains and large ferromagnetic (FM) grains. The percolation threshold of cobalt in metastable Cu-Co alloys formed by electrodeposition is lower (less than ∼7.5 at.%) than that prepared by physical deposition methods (∼35 at.%).
doi_str_mv 10.1023/B:JMSC.0000040079.41985.6b
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28729572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28230181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-22f54f6d2218fec3592c7594fe449333c3ac31a6dc00da4a8f37e21f408bf8453</originalsourceid><addsrcrecordid>eNqNkUlPwzAQhS0EEmX5DxEIbine43CjEatacWC5Wq4zroLSuNjOgX9PApUqcWIuc5hvZvTeQ-iM4CnBlF3Nrp8WL9UUj8UxLsopJ6USU7ncQxMiCpZzhdk-mmBMaU65JIfoKMaPARcFJRP0vmhs8DGF3qY-mDarYQNdDZ2FzLts1Zgu5Wuz6iD5ALGJyYyjpsugBZuCH3gfmwR1VvV55TPTtv4rnqADZ9oIp9t-jN7ubl-rh3z-fP9Y3cxzyxRJOaVOcCdrSolyYJkoqS1EyR1wXjLGLDOWESNri3FtuFGOFUCJ41gtneKCHaPL37ub4D97iEmvm2ihbU0Hvo-aqoKWg9J_gJRhosgAnv8BP3wfukGEplSUUnEi5UBd_1KjeTGA05vQrE340gTrMRk902MyepeM_klGy-WwfLF9YaI1rQuDpU3cXZCECSIL9g1Rwo9_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259684166</pqid></control><display><type>article</type><title>Microstructural dependence of giant-magnetoresistance in electrodeposited Cu-Co alloys</title><source>Springer Nature</source><creator>COHEN-HYAMS, T ; PLITZKO, J. M ; HETHERINGTON, C. J. D ; HUTCHISON, J. L ; YAHALOM, J ; KAPLAN, W. D</creator><creatorcontrib>COHEN-HYAMS, T ; PLITZKO, J. M ; HETHERINGTON, C. J. D ; HUTCHISON, J. L ; YAHALOM, J ; KAPLAN, W. D</creatorcontrib><description>The relationship between the microstructure and the magnetic properties of heterogeneous Cu-Co [Cu92.5-Co7.5] (at.%) thin films prepared by electrodeposition was studied. Electron spectroscopic imaging (ESI) studies clearly revealed the evolution of the cobalt microstructure as a function of thermal treatments. The as-deposited film is composed of more than one phase; metastable Cu-Co, copper and cobalt. During annealing the metastable phase decomposes into two fcc phases; Cu and Co. Grain growth occurs with increasing annealing duration, such that the cobalt grains are more homogeneously distributed in the copper matrix. A maximum GMR effect was found after annealing at 450°C for 1.5 h, which corresponds to an average cobalt grain size of 5.5 nm according to magnetization characterization. A significant fraction of the cobalt in the Cu-Co film did not contribute to the GMR effect, due to interactions between the different magnetic grains and large ferromagnetic (FM) grains. The percolation threshold of cobalt in metastable Cu-Co alloys formed by electrodeposition is lower (less than ∼7.5 at.%) than that prepared by physical deposition methods (∼35 at.%).</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1023/B:JMSC.0000040079.41985.6b</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Annealing ; Applied sciences ; Cobalt base alloys ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Copper ; Copper base alloys ; Cross-disciplinary physics: materials science; rheology ; Dependence ; Electrodeposition ; Electrodeposition, electroplating ; Exact sciences and technology ; Ferromagnetism ; Giant magnetoresistance ; Grain growth ; Grain size ; Magnetic properties ; Magnetic properties and materials ; Magnetism ; Magnetoresistance ; Magnetoresistivity ; Magnetotransport phenomena, materials for magnetotransport ; Materials science ; Metals. Metallurgy ; Metastable phases ; Methods of deposition of films and coatings; film growth and epitaxy ; Microstructure ; Percolation ; Physics ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Thin films</subject><ispartof>Journal of materials science, 2004-09, Vol.39 (18), p.5701-5709</ispartof><rights>2004 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2004). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-22f54f6d2218fec3592c7594fe449333c3ac31a6dc00da4a8f37e21f408bf8453</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16135167$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>COHEN-HYAMS, T</creatorcontrib><creatorcontrib>PLITZKO, J. M</creatorcontrib><creatorcontrib>HETHERINGTON, C. J. D</creatorcontrib><creatorcontrib>HUTCHISON, J. L</creatorcontrib><creatorcontrib>YAHALOM, J</creatorcontrib><creatorcontrib>KAPLAN, W. D</creatorcontrib><title>Microstructural dependence of giant-magnetoresistance in electrodeposited Cu-Co alloys</title><title>Journal of materials science</title><description>The relationship between the microstructure and the magnetic properties of heterogeneous Cu-Co [Cu92.5-Co7.5] (at.%) thin films prepared by electrodeposition was studied. Electron spectroscopic imaging (ESI) studies clearly revealed the evolution of the cobalt microstructure as a function of thermal treatments. The as-deposited film is composed of more than one phase; metastable Cu-Co, copper and cobalt. During annealing the metastable phase decomposes into two fcc phases; Cu and Co. Grain growth occurs with increasing annealing duration, such that the cobalt grains are more homogeneously distributed in the copper matrix. A maximum GMR effect was found after annealing at 450°C for 1.5 h, which corresponds to an average cobalt grain size of 5.5 nm according to magnetization characterization. A significant fraction of the cobalt in the Cu-Co film did not contribute to the GMR effect, due to interactions between the different magnetic grains and large ferromagnetic (FM) grains. The percolation threshold of cobalt in metastable Cu-Co alloys formed by electrodeposition is lower (less than ∼7.5 at.%) than that prepared by physical deposition methods (∼35 at.%).</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>Cobalt base alloys</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dependence</subject><subject>Electrodeposition</subject><subject>Electrodeposition, electroplating</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetism</subject><subject>Giant magnetoresistance</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Magnetic properties</subject><subject>Magnetic properties and materials</subject><subject>Magnetism</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Magnetotransport phenomena, materials for magnetotransport</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Metastable phases</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microstructure</subject><subject>Percolation</subject><subject>Physics</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Thin films</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkUlPwzAQhS0EEmX5DxEIbine43CjEatacWC5Wq4zroLSuNjOgX9PApUqcWIuc5hvZvTeQ-iM4CnBlF3Nrp8WL9UUj8UxLsopJ6USU7ncQxMiCpZzhdk-mmBMaU65JIfoKMaPARcFJRP0vmhs8DGF3qY-mDarYQNdDZ2FzLts1Zgu5Wuz6iD5ALGJyYyjpsugBZuCH3gfmwR1VvV55TPTtv4rnqADZ9oIp9t-jN7ubl-rh3z-fP9Y3cxzyxRJOaVOcCdrSolyYJkoqS1EyR1wXjLGLDOWESNri3FtuFGOFUCJ41gtneKCHaPL37ub4D97iEmvm2ihbU0Hvo-aqoKWg9J_gJRhosgAnv8BP3wfukGEplSUUnEi5UBd_1KjeTGA05vQrE340gTrMRk902MyepeM_klGy-WwfLF9YaI1rQuDpU3cXZCECSIL9g1Rwo9_</recordid><startdate>20040915</startdate><enddate>20040915</enddate><creator>COHEN-HYAMS, T</creator><creator>PLITZKO, J. M</creator><creator>HETHERINGTON, C. J. D</creator><creator>HUTCHISON, J. L</creator><creator>YAHALOM, J</creator><creator>KAPLAN, W. D</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope><scope>H8D</scope></search><sort><creationdate>20040915</creationdate><title>Microstructural dependence of giant-magnetoresistance in electrodeposited Cu-Co alloys</title><author>COHEN-HYAMS, T ; PLITZKO, J. M ; HETHERINGTON, C. J. D ; HUTCHISON, J. L ; YAHALOM, J ; KAPLAN, W. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-22f54f6d2218fec3592c7594fe449333c3ac31a6dc00da4a8f37e21f408bf8453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>Cobalt base alloys</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dependence</topic><topic>Electrodeposition</topic><topic>Electrodeposition, electroplating</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetism</topic><topic>Giant magnetoresistance</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Magnetic properties</topic><topic>Magnetic properties and materials</topic><topic>Magnetism</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Magnetotransport phenomena, materials for magnetotransport</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Metastable phases</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microstructure</topic><topic>Percolation</topic><topic>Physics</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COHEN-HYAMS, T</creatorcontrib><creatorcontrib>PLITZKO, J. M</creatorcontrib><creatorcontrib>HETHERINGTON, C. J. D</creatorcontrib><creatorcontrib>HUTCHISON, J. L</creatorcontrib><creatorcontrib>YAHALOM, J</creatorcontrib><creatorcontrib>KAPLAN, W. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COHEN-HYAMS, T</au><au>PLITZKO, J. M</au><au>HETHERINGTON, C. J. D</au><au>HUTCHISON, J. L</au><au>YAHALOM, J</au><au>KAPLAN, W. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural dependence of giant-magnetoresistance in electrodeposited Cu-Co alloys</atitle><jtitle>Journal of materials science</jtitle><date>2004-09-15</date><risdate>2004</risdate><volume>39</volume><issue>18</issue><spage>5701</spage><epage>5709</epage><pages>5701-5709</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>The relationship between the microstructure and the magnetic properties of heterogeneous Cu-Co [Cu92.5-Co7.5] (at.%) thin films prepared by electrodeposition was studied. Electron spectroscopic imaging (ESI) studies clearly revealed the evolution of the cobalt microstructure as a function of thermal treatments. The as-deposited film is composed of more than one phase; metastable Cu-Co, copper and cobalt. During annealing the metastable phase decomposes into two fcc phases; Cu and Co. Grain growth occurs with increasing annealing duration, such that the cobalt grains are more homogeneously distributed in the copper matrix. A maximum GMR effect was found after annealing at 450°C for 1.5 h, which corresponds to an average cobalt grain size of 5.5 nm according to magnetization characterization. A significant fraction of the cobalt in the Cu-Co film did not contribute to the GMR effect, due to interactions between the different magnetic grains and large ferromagnetic (FM) grains. The percolation threshold of cobalt in metastable Cu-Co alloys formed by electrodeposition is lower (less than ∼7.5 at.%) than that prepared by physical deposition methods (∼35 at.%).</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/B:JMSC.0000040079.41985.6b</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2004-09, Vol.39 (18), p.5701-5709
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_28729572
source Springer Nature
subjects Annealing
Applied sciences
Cobalt base alloys
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Copper
Copper base alloys
Cross-disciplinary physics: materials science
rheology
Dependence
Electrodeposition
Electrodeposition, electroplating
Exact sciences and technology
Ferromagnetism
Giant magnetoresistance
Grain growth
Grain size
Magnetic properties
Magnetic properties and materials
Magnetism
Magnetoresistance
Magnetoresistivity
Magnetotransport phenomena, materials for magnetotransport
Materials science
Metals. Metallurgy
Metastable phases
Methods of deposition of films and coatings
film growth and epitaxy
Microstructure
Percolation
Physics
Structure and morphology
thickness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
Thin films
title Microstructural dependence of giant-magnetoresistance in electrodeposited Cu-Co alloys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20dependence%20of%20giant-magnetoresistance%20in%20electrodeposited%20Cu-Co%20alloys&rft.jtitle=Journal%20of%20materials%20science&rft.au=COHEN-HYAMS,%20T&rft.date=2004-09-15&rft.volume=39&rft.issue=18&rft.spage=5701&rft.epage=5709&rft.pages=5701-5709&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1023/B:JMSC.0000040079.41985.6b&rft_dat=%3Cproquest_cross%3E28230181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-22f54f6d2218fec3592c7594fe449333c3ac31a6dc00da4a8f37e21f408bf8453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259684166&rft_id=info:pmid/&rfr_iscdi=true