Loading…
A Protocol for Activated Bioorthogonal Fluorescence Labeling and Imaging of 4‐Hydroxyphenylpyruvate Dioxygenase in Plants
4‐Hydroxyphenylpyruvate dioxygenase (HPPD) plays a crucial role in the synthesis of nutrients needed to maintain optimal plant growth. Its level is closely linked to the extent of abiotic stress experienced by plants. Moreover, it is also the target of commercial herbicides. Therefore, labeling of H...
Saved in:
Published in: | Angewandte Chemie International Edition 2023-11, Vol.62 (47), p.e202312618-n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3508-6317128a0e95150e44b87126b516a3b0c75bc31e208428836127e1ed235ba9463 |
---|---|
cites | cdi_FETCH-LOGICAL-c3508-6317128a0e95150e44b87126b516a3b0c75bc31e208428836127e1ed235ba9463 |
container_end_page | n/a |
container_issue | 47 |
container_start_page | e202312618 |
container_title | Angewandte Chemie International Edition |
container_volume | 62 |
creator | Zeng, Xiaoyan Ma, Xiaoxie Dong, Jin Li, Biao Hua Liu, Sheng Yin, Jun Yang, Guang‐Fu |
description | 4‐Hydroxyphenylpyruvate dioxygenase (HPPD) plays a crucial role in the synthesis of nutrients needed to maintain optimal plant growth. Its level is closely linked to the extent of abiotic stress experienced by plants. Moreover, it is also the target of commercial herbicides. Therefore, labeling of HPPD in plants not only enables visualization of its tissue distribution and cellular uptake, it also facilitates assessment of abiotic stress of plants and provides information needed for the development of effective environmentally friendly herbicides. In this study, we created a method for fluorescence labeling of HPPD that avoids interference with the normal growth of plants. In this strategy, a perylene‐linked dibenzyl‐cyclooctyne undergoes strain‐promoted azide‐alkyne cycloaddition with an azide‐containing HPPD ligand. The activation‐based labeling process results in a significant emission enhancement caused by the change in the fluorescent forms from an excimer to a monomer. Notably, this activated bioorthogonal strategy is applicable to visualizing HPPD in Arabidopsis thaliana, and assessing its response to multiple abiotic stresses. Also, it can be employed to monitor in vivo levels and locations of HPPD in crops. Consequently, the labeling strategy will be a significant tool in investigations of HPPD‐related abiotic stress mechanisms, discovering novel herbicides, and uncovering unknown biological functions.
A protocol for activated bioorthogonal fluorescence labeling and imaging of 4‐hydroxyphenylpyruvate dioxygenase in plants is developed. |
doi_str_mv | 10.1002/anie.202312618 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2873250636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873250636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3508-6317128a0e95150e44b87126b516a3b0c75bc31e208428836127e1ed235ba9463</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhiMEEp8rsyUWlhR_xI4zFii0UgUMMEdOem2NXLvYCRCx8BP4jfwSHBWBxMJ0p9Pznu69N0mOCR4QjOmZshoGFFNGqCByK9kjnJKU5Tnbjn3GWJpLTnaT_RAeIy8lFnvJ2xDdede42hk0dx4N60Y_qwZm6Fw755ulWzirDLoyrfMQarA1oKmqwGi7QMrO0GSlFn3v5ij7fP8YdzPvXrv1Emxn1p1v-23oUsfZAqwKgLRFd0bZJhwmO3NlAhx914Pk4Wp0fzFOp7fXk4vhNK0ZxzIVjOSESoWh4IRjyLJKxoGoOBGKVbjOeVUzAhTLLLpigtAcCMwo45UqMsEOktPN3rV3Ty2Eplzp6MTEI8C1oaQyZ5RjwXr05A_66FofH9BTspC4EIJGarChau9C8DAv116vlO9Kgss-i7LPovzJIgqKjeBFG-j-ocvhzWT0q_0CPk6OVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889809662</pqid></control><display><type>article</type><title>A Protocol for Activated Bioorthogonal Fluorescence Labeling and Imaging of 4‐Hydroxyphenylpyruvate Dioxygenase in Plants</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zeng, Xiaoyan ; Ma, Xiaoxie ; Dong, Jin ; Li, Biao ; Hua Liu, Sheng ; Yin, Jun ; Yang, Guang‐Fu</creator><creatorcontrib>Zeng, Xiaoyan ; Ma, Xiaoxie ; Dong, Jin ; Li, Biao ; Hua Liu, Sheng ; Yin, Jun ; Yang, Guang‐Fu</creatorcontrib><description>4‐Hydroxyphenylpyruvate dioxygenase (HPPD) plays a crucial role in the synthesis of nutrients needed to maintain optimal plant growth. Its level is closely linked to the extent of abiotic stress experienced by plants. Moreover, it is also the target of commercial herbicides. Therefore, labeling of HPPD in plants not only enables visualization of its tissue distribution and cellular uptake, it also facilitates assessment of abiotic stress of plants and provides information needed for the development of effective environmentally friendly herbicides. In this study, we created a method for fluorescence labeling of HPPD that avoids interference with the normal growth of plants. In this strategy, a perylene‐linked dibenzyl‐cyclooctyne undergoes strain‐promoted azide‐alkyne cycloaddition with an azide‐containing HPPD ligand. The activation‐based labeling process results in a significant emission enhancement caused by the change in the fluorescent forms from an excimer to a monomer. Notably, this activated bioorthogonal strategy is applicable to visualizing HPPD in Arabidopsis thaliana, and assessing its response to multiple abiotic stresses. Also, it can be employed to monitor in vivo levels and locations of HPPD in crops. Consequently, the labeling strategy will be a significant tool in investigations of HPPD‐related abiotic stress mechanisms, discovering novel herbicides, and uncovering unknown biological functions.
A protocol for activated bioorthogonal fluorescence labeling and imaging of 4‐hydroxyphenylpyruvate dioxygenase in plants is developed.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202312618</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>4-Hydroxyphenylpyruvate Dioxygenase ; Abiotic Stress ; Alkynes ; Bioorthogonal Reaction ; Cycloaddition ; Excimers ; Fluorescence ; Fluorescence Labeling ; Herbicides ; Hydroxyphenylpyruvate dioxygenase ; Labeling ; Nutrients ; Plant growth ; Plants Imaging</subject><ispartof>Angewandte Chemie International Edition, 2023-11, Vol.62 (47), p.e202312618-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3508-6317128a0e95150e44b87126b516a3b0c75bc31e208428836127e1ed235ba9463</citedby><cites>FETCH-LOGICAL-c3508-6317128a0e95150e44b87126b516a3b0c75bc31e208428836127e1ed235ba9463</cites><orcidid>0000-0003-4732-6123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zeng, Xiaoyan</creatorcontrib><creatorcontrib>Ma, Xiaoxie</creatorcontrib><creatorcontrib>Dong, Jin</creatorcontrib><creatorcontrib>Li, Biao</creatorcontrib><creatorcontrib>Hua Liu, Sheng</creatorcontrib><creatorcontrib>Yin, Jun</creatorcontrib><creatorcontrib>Yang, Guang‐Fu</creatorcontrib><title>A Protocol for Activated Bioorthogonal Fluorescence Labeling and Imaging of 4‐Hydroxyphenylpyruvate Dioxygenase in Plants</title><title>Angewandte Chemie International Edition</title><description>4‐Hydroxyphenylpyruvate dioxygenase (HPPD) plays a crucial role in the synthesis of nutrients needed to maintain optimal plant growth. Its level is closely linked to the extent of abiotic stress experienced by plants. Moreover, it is also the target of commercial herbicides. Therefore, labeling of HPPD in plants not only enables visualization of its tissue distribution and cellular uptake, it also facilitates assessment of abiotic stress of plants and provides information needed for the development of effective environmentally friendly herbicides. In this study, we created a method for fluorescence labeling of HPPD that avoids interference with the normal growth of plants. In this strategy, a perylene‐linked dibenzyl‐cyclooctyne undergoes strain‐promoted azide‐alkyne cycloaddition with an azide‐containing HPPD ligand. The activation‐based labeling process results in a significant emission enhancement caused by the change in the fluorescent forms from an excimer to a monomer. Notably, this activated bioorthogonal strategy is applicable to visualizing HPPD in Arabidopsis thaliana, and assessing its response to multiple abiotic stresses. Also, it can be employed to monitor in vivo levels and locations of HPPD in crops. Consequently, the labeling strategy will be a significant tool in investigations of HPPD‐related abiotic stress mechanisms, discovering novel herbicides, and uncovering unknown biological functions.
A protocol for activated bioorthogonal fluorescence labeling and imaging of 4‐hydroxyphenylpyruvate dioxygenase in plants is developed.</description><subject>4-Hydroxyphenylpyruvate Dioxygenase</subject><subject>Abiotic Stress</subject><subject>Alkynes</subject><subject>Bioorthogonal Reaction</subject><subject>Cycloaddition</subject><subject>Excimers</subject><subject>Fluorescence</subject><subject>Fluorescence Labeling</subject><subject>Herbicides</subject><subject>Hydroxyphenylpyruvate dioxygenase</subject><subject>Labeling</subject><subject>Nutrients</subject><subject>Plant growth</subject><subject>Plants Imaging</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PwzAQhiMEEp8rsyUWlhR_xI4zFii0UgUMMEdOem2NXLvYCRCx8BP4jfwSHBWBxMJ0p9Pznu69N0mOCR4QjOmZshoGFFNGqCByK9kjnJKU5Tnbjn3GWJpLTnaT_RAeIy8lFnvJ2xDdede42hk0dx4N60Y_qwZm6Fw755ulWzirDLoyrfMQarA1oKmqwGi7QMrO0GSlFn3v5ij7fP8YdzPvXrv1Emxn1p1v-23oUsfZAqwKgLRFd0bZJhwmO3NlAhx914Pk4Wp0fzFOp7fXk4vhNK0ZxzIVjOSESoWh4IRjyLJKxoGoOBGKVbjOeVUzAhTLLLpigtAcCMwo45UqMsEOktPN3rV3Ty2Eplzp6MTEI8C1oaQyZ5RjwXr05A_66FofH9BTspC4EIJGarChau9C8DAv116vlO9Kgss-i7LPovzJIgqKjeBFG-j-ocvhzWT0q_0CPk6OVg</recordid><startdate>20231120</startdate><enddate>20231120</enddate><creator>Zeng, Xiaoyan</creator><creator>Ma, Xiaoxie</creator><creator>Dong, Jin</creator><creator>Li, Biao</creator><creator>Hua Liu, Sheng</creator><creator>Yin, Jun</creator><creator>Yang, Guang‐Fu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4732-6123</orcidid></search><sort><creationdate>20231120</creationdate><title>A Protocol for Activated Bioorthogonal Fluorescence Labeling and Imaging of 4‐Hydroxyphenylpyruvate Dioxygenase in Plants</title><author>Zeng, Xiaoyan ; Ma, Xiaoxie ; Dong, Jin ; Li, Biao ; Hua Liu, Sheng ; Yin, Jun ; Yang, Guang‐Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3508-6317128a0e95150e44b87126b516a3b0c75bc31e208428836127e1ed235ba9463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>4-Hydroxyphenylpyruvate Dioxygenase</topic><topic>Abiotic Stress</topic><topic>Alkynes</topic><topic>Bioorthogonal Reaction</topic><topic>Cycloaddition</topic><topic>Excimers</topic><topic>Fluorescence</topic><topic>Fluorescence Labeling</topic><topic>Herbicides</topic><topic>Hydroxyphenylpyruvate dioxygenase</topic><topic>Labeling</topic><topic>Nutrients</topic><topic>Plant growth</topic><topic>Plants Imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Xiaoyan</creatorcontrib><creatorcontrib>Ma, Xiaoxie</creatorcontrib><creatorcontrib>Dong, Jin</creatorcontrib><creatorcontrib>Li, Biao</creatorcontrib><creatorcontrib>Hua Liu, Sheng</creatorcontrib><creatorcontrib>Yin, Jun</creatorcontrib><creatorcontrib>Yang, Guang‐Fu</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Xiaoyan</au><au>Ma, Xiaoxie</au><au>Dong, Jin</au><au>Li, Biao</au><au>Hua Liu, Sheng</au><au>Yin, Jun</au><au>Yang, Guang‐Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Protocol for Activated Bioorthogonal Fluorescence Labeling and Imaging of 4‐Hydroxyphenylpyruvate Dioxygenase in Plants</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2023-11-20</date><risdate>2023</risdate><volume>62</volume><issue>47</issue><spage>e202312618</spage><epage>n/a</epage><pages>e202312618-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>4‐Hydroxyphenylpyruvate dioxygenase (HPPD) plays a crucial role in the synthesis of nutrients needed to maintain optimal plant growth. Its level is closely linked to the extent of abiotic stress experienced by plants. Moreover, it is also the target of commercial herbicides. Therefore, labeling of HPPD in plants not only enables visualization of its tissue distribution and cellular uptake, it also facilitates assessment of abiotic stress of plants and provides information needed for the development of effective environmentally friendly herbicides. In this study, we created a method for fluorescence labeling of HPPD that avoids interference with the normal growth of plants. In this strategy, a perylene‐linked dibenzyl‐cyclooctyne undergoes strain‐promoted azide‐alkyne cycloaddition with an azide‐containing HPPD ligand. The activation‐based labeling process results in a significant emission enhancement caused by the change in the fluorescent forms from an excimer to a monomer. Notably, this activated bioorthogonal strategy is applicable to visualizing HPPD in Arabidopsis thaliana, and assessing its response to multiple abiotic stresses. Also, it can be employed to monitor in vivo levels and locations of HPPD in crops. Consequently, the labeling strategy will be a significant tool in investigations of HPPD‐related abiotic stress mechanisms, discovering novel herbicides, and uncovering unknown biological functions.
A protocol for activated bioorthogonal fluorescence labeling and imaging of 4‐hydroxyphenylpyruvate dioxygenase in plants is developed.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202312618</doi><tpages>11</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4732-6123</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2023-11, Vol.62 (47), p.e202312618-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2873250636 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 4-Hydroxyphenylpyruvate Dioxygenase Abiotic Stress Alkynes Bioorthogonal Reaction Cycloaddition Excimers Fluorescence Fluorescence Labeling Herbicides Hydroxyphenylpyruvate dioxygenase Labeling Nutrients Plant growth Plants Imaging |
title | A Protocol for Activated Bioorthogonal Fluorescence Labeling and Imaging of 4‐Hydroxyphenylpyruvate Dioxygenase in Plants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Protocol%20for%20Activated%20Bioorthogonal%20Fluorescence%20Labeling%20and%20Imaging%20of%204%E2%80%90Hydroxyphenylpyruvate%20Dioxygenase%20in%20Plants&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zeng,%20Xiaoyan&rft.date=2023-11-20&rft.volume=62&rft.issue=47&rft.spage=e202312618&rft.epage=n/a&rft.pages=e202312618-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202312618&rft_dat=%3Cproquest_cross%3E2873250636%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3508-6317128a0e95150e44b87126b516a3b0c75bc31e208428836127e1ed235ba9463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889809662&rft_id=info:pmid/&rfr_iscdi=true |