Loading…

High rate anodic dissolution of 100Cr6 steel in aqueous NaNO3 solution

The high rate anodic dissolution of 100Cr6 steel in NaNO3 electrolytes of various concentrations and at different temperatures was investigated. Galvanostatic flow channel experiments were used to examine the current efficiency of the steel substrate. Below 6 A cm-2 (zone A), oxygen evolution domina...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied electrochemistry 2004-10, Vol.34 (10), p.997-1005
Main Authors: HAISCH, T, MITTEMEIJER, E. J, SCHULTZE, J. W
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1005
container_issue 10
container_start_page 997
container_title Journal of applied electrochemistry
container_volume 34
creator HAISCH, T
MITTEMEIJER, E. J
SCHULTZE, J. W
description The high rate anodic dissolution of 100Cr6 steel in NaNO3 electrolytes of various concentrations and at different temperatures was investigated. Galvanostatic flow channel experiments were used to examine the current efficiency of the steel substrate. Below 6 A cm-2 (zone A), oxygen evolution dominates, while at higher current densities iron dissolution prevails (zone C). Potentiodynamic polarization studies indicated a complete substrate surface passivation up to +1.8 V (vs NHE), and periodic fluctuations of the current density at higher anode potentials ( > +1.8 V) due to severe oxygen evolution. Rotating cylinder measurements served for polarization studies at lower current densities in the region of dominating oxygen evolution. Scanning electron micrographs revealed a correlation between the current efficiency and the coverage of the substrate surface with an electronically conductive film at current densities of 2, 9 and 20 A cm-2 . The microstructure of the black, solid surface film developing during the high rate anodic dissolution of the steel was found to be heterogeneous and very porous. The main film components, as determined by X-ray diffraction and Auger electron spectroscopical measurements, were amorphous iron oxides, FexOy, and inert carbides, M3C, originating from the steel matrix. An activation-repassivation process is proposed, which is responsible for the development of the complex multilayer (multiphase) structure observed at the steel substrate surface.
doi_str_mv 10.1023/B:JACH.0000042675.15101.ff
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28740165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28208034</sourcerecordid><originalsourceid>FETCH-LOGICAL-p245t-a343cf4a1f1e8ab6e9adefc8d5f09dcc24ecbba9f1f060e5f16ef306301b6ee3</originalsourceid><addsrcrecordid>eNqNzjFPwzAQhmELgUQp_AcLCbaEO9txHDaIKAVV7dKBLbo6NhilSYnTgX9PKsrOLbc8-vQydo2QIgh593j_-lDOUzicEjrPUswQMPX-hE0wy0VijDSnbAIgMDEFvp2zixg_R14IrSZsNg_vH7ynwXFquzpYXocYu2Y_hK7lnecIUPaax8G5hoeW09fedfvIl7RcSf4nL9mZpya6q-OfsvXsaV3Ok8Xq-aV8WCQ7obIhIamk9YrQozO00a6g2nlr6sxDUVsrlLObDRUePWhwmUftvAQtAUfs5JTd_s7u-m7siEO1DdG6pqH2EFUJkytAnf0DCjAw1kzZzRFStNT4nlobYrXrw5b67wo15oVSRv4AOSBryw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28208034</pqid></control><display><type>article</type><title>High rate anodic dissolution of 100Cr6 steel in aqueous NaNO3 solution</title><source>Springer Nature</source><creator>HAISCH, T ; MITTEMEIJER, E. J ; SCHULTZE, J. W</creator><creatorcontrib>HAISCH, T ; MITTEMEIJER, E. J ; SCHULTZE, J. W</creatorcontrib><description>The high rate anodic dissolution of 100Cr6 steel in NaNO3 electrolytes of various concentrations and at different temperatures was investigated. Galvanostatic flow channel experiments were used to examine the current efficiency of the steel substrate. Below 6 A cm-2 (zone A), oxygen evolution dominates, while at higher current densities iron dissolution prevails (zone C). Potentiodynamic polarization studies indicated a complete substrate surface passivation up to +1.8 V (vs NHE), and periodic fluctuations of the current density at higher anode potentials ( &gt; +1.8 V) due to severe oxygen evolution. Rotating cylinder measurements served for polarization studies at lower current densities in the region of dominating oxygen evolution. Scanning electron micrographs revealed a correlation between the current efficiency and the coverage of the substrate surface with an electronically conductive film at current densities of 2, 9 and 20 A cm-2 . The microstructure of the black, solid surface film developing during the high rate anodic dissolution of the steel was found to be heterogeneous and very porous. The main film components, as determined by X-ray diffraction and Auger electron spectroscopical measurements, were amorphous iron oxides, FexOy, and inert carbides, M3C, originating from the steel matrix. An activation-repassivation process is proposed, which is responsible for the development of the complex multilayer (multiphase) structure observed at the steel substrate surface.</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1023/B:JACH.0000042675.15101.ff</identifier><identifier>CODEN: JAELBJ</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Corrosion ; Corrosion mechanisms ; Exact sciences and technology ; Metals. Metallurgy</subject><ispartof>Journal of applied electrochemistry, 2004-10, Vol.34 (10), p.997-1005</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16179448$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HAISCH, T</creatorcontrib><creatorcontrib>MITTEMEIJER, E. J</creatorcontrib><creatorcontrib>SCHULTZE, J. W</creatorcontrib><title>High rate anodic dissolution of 100Cr6 steel in aqueous NaNO3 solution</title><title>Journal of applied electrochemistry</title><description>The high rate anodic dissolution of 100Cr6 steel in NaNO3 electrolytes of various concentrations and at different temperatures was investigated. Galvanostatic flow channel experiments were used to examine the current efficiency of the steel substrate. Below 6 A cm-2 (zone A), oxygen evolution dominates, while at higher current densities iron dissolution prevails (zone C). Potentiodynamic polarization studies indicated a complete substrate surface passivation up to +1.8 V (vs NHE), and periodic fluctuations of the current density at higher anode potentials ( &gt; +1.8 V) due to severe oxygen evolution. Rotating cylinder measurements served for polarization studies at lower current densities in the region of dominating oxygen evolution. Scanning electron micrographs revealed a correlation between the current efficiency and the coverage of the substrate surface with an electronically conductive film at current densities of 2, 9 and 20 A cm-2 . The microstructure of the black, solid surface film developing during the high rate anodic dissolution of the steel was found to be heterogeneous and very porous. The main film components, as determined by X-ray diffraction and Auger electron spectroscopical measurements, were amorphous iron oxides, FexOy, and inert carbides, M3C, originating from the steel matrix. An activation-repassivation process is proposed, which is responsible for the development of the complex multilayer (multiphase) structure observed at the steel substrate surface.</description><subject>Applied sciences</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Exact sciences and technology</subject><subject>Metals. Metallurgy</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNzjFPwzAQhmELgUQp_AcLCbaEO9txHDaIKAVV7dKBLbo6NhilSYnTgX9PKsrOLbc8-vQydo2QIgh593j_-lDOUzicEjrPUswQMPX-hE0wy0VijDSnbAIgMDEFvp2zixg_R14IrSZsNg_vH7ynwXFquzpYXocYu2Y_hK7lnecIUPaax8G5hoeW09fedfvIl7RcSf4nL9mZpya6q-OfsvXsaV3Ok8Xq-aV8WCQ7obIhIamk9YrQozO00a6g2nlr6sxDUVsrlLObDRUePWhwmUftvAQtAUfs5JTd_s7u-m7siEO1DdG6pqH2EFUJkytAnf0DCjAw1kzZzRFStNT4nlobYrXrw5b67wo15oVSRv4AOSBryw</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>HAISCH, T</creator><creator>MITTEMEIJER, E. J</creator><creator>SCHULTZE, J. W</creator><general>Springer</general><scope>IQODW</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20041001</creationdate><title>High rate anodic dissolution of 100Cr6 steel in aqueous NaNO3 solution</title><author>HAISCH, T ; MITTEMEIJER, E. J ; SCHULTZE, J. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p245t-a343cf4a1f1e8ab6e9adefc8d5f09dcc24ecbba9f1f060e5f16ef306301b6ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Exact sciences and technology</topic><topic>Metals. Metallurgy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HAISCH, T</creatorcontrib><creatorcontrib>MITTEMEIJER, E. J</creatorcontrib><creatorcontrib>SCHULTZE, J. W</creatorcontrib><collection>Pascal-Francis</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HAISCH, T</au><au>MITTEMEIJER, E. J</au><au>SCHULTZE, J. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High rate anodic dissolution of 100Cr6 steel in aqueous NaNO3 solution</atitle><jtitle>Journal of applied electrochemistry</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>34</volume><issue>10</issue><spage>997</spage><epage>1005</epage><pages>997-1005</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><coden>JAELBJ</coden><abstract>The high rate anodic dissolution of 100Cr6 steel in NaNO3 electrolytes of various concentrations and at different temperatures was investigated. Galvanostatic flow channel experiments were used to examine the current efficiency of the steel substrate. Below 6 A cm-2 (zone A), oxygen evolution dominates, while at higher current densities iron dissolution prevails (zone C). Potentiodynamic polarization studies indicated a complete substrate surface passivation up to +1.8 V (vs NHE), and periodic fluctuations of the current density at higher anode potentials ( &gt; +1.8 V) due to severe oxygen evolution. Rotating cylinder measurements served for polarization studies at lower current densities in the region of dominating oxygen evolution. Scanning electron micrographs revealed a correlation between the current efficiency and the coverage of the substrate surface with an electronically conductive film at current densities of 2, 9 and 20 A cm-2 . The microstructure of the black, solid surface film developing during the high rate anodic dissolution of the steel was found to be heterogeneous and very porous. The main film components, as determined by X-ray diffraction and Auger electron spectroscopical measurements, were amorphous iron oxides, FexOy, and inert carbides, M3C, originating from the steel matrix. An activation-repassivation process is proposed, which is responsible for the development of the complex multilayer (multiphase) structure observed at the steel substrate surface.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/B:JACH.0000042675.15101.ff</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-891X
ispartof Journal of applied electrochemistry, 2004-10, Vol.34 (10), p.997-1005
issn 0021-891X
1572-8838
language eng
recordid cdi_proquest_miscellaneous_28740165
source Springer Nature
subjects Applied sciences
Corrosion
Corrosion mechanisms
Exact sciences and technology
Metals. Metallurgy
title High rate anodic dissolution of 100Cr6 steel in aqueous NaNO3 solution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20rate%20anodic%20dissolution%20of%20100Cr6%20steel%20in%20aqueous%20NaNO3%20solution&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=HAISCH,%20T&rft.date=2004-10-01&rft.volume=34&rft.issue=10&rft.spage=997&rft.epage=1005&rft.pages=997-1005&rft.issn=0021-891X&rft.eissn=1572-8838&rft.coden=JAELBJ&rft_id=info:doi/10.1023/B:JACH.0000042675.15101.ff&rft_dat=%3Cproquest_pasca%3E28208034%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p245t-a343cf4a1f1e8ab6e9adefc8d5f09dcc24ecbba9f1f060e5f16ef306301b6ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28208034&rft_id=info:pmid/&rfr_iscdi=true