Loading…

The intestinal microbiome of children with initial and recurrent nephrolithiasis: A pilot study and exploratory analysis

Kidney stone disease in children is rising disproportionate to the general population, representing a disease population with a distinct biological mechanism as compared to adults. Factors influencing recurrent kidney stone disease in children are poorly characterized and the associations of the int...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pediatric urology 2024-02, Vol.20 (1), p.18-25
Main Authors: Ellison, Jonathan S., Atkinson, Samantha N., Hayward, Mike, Hokanson, Elise, Sheridan, Katherine R., Salzman, Nita
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Kidney stone disease in children is rising disproportionate to the general population, representing a disease population with a distinct biological mechanism as compared to adults. Factors influencing recurrent kidney stone disease in children are poorly characterized and the associations of the intestinal microbiome within sub-populations of kidney stone formers, however, are not well described. We evaluated a pilot cohort of children with nephrolithiasis comparing patients based on recurrent kidney stone episodes and abnormal 24-h urinary parameters, with dual aims to compare the microbiome signal in children with initial and recurrent nephrolithiasis and to explore additional associations in microbiome composition and diversity within this population. Children aged 6–18 with a history of nephrolithiasis, without an active ureteral calculus or antibiotic exposure within 30 days of study entry were eligible to participate. All participants had a 24-h urine study within 6 months of study entry and provided a fecal sample. Microbiome samples were analyzed using 16S ribosomal DNA sequencing techniques for alpha and beta diversity comparing initial and recurrent stone formers as well as microbiome multivariate association (MaAsLin2) to determine differentially abundant taxa. Shotgun sequencing reads were aligned to custom oxidase degradation and butyrate production gene databases (5 databases total). Comparisons for MaAsLin2 and shotgun metagenomics, normalized to sequencing depth, were based on stone recurrence, sex, hypercalcuria (≤4 mg/kg/day), hyperoxaluria (≥45 mg/1.73 m2), and hypocitraturia (
ISSN:1477-5131
1873-4898
DOI:10.1016/j.jpurol.2023.09.015