Loading…
Programmable matter
In the past 50 years, computers have shrunk from room-size mainframes to lightweight handhelds. This fantastic miniaturization is primarily the result of high-volume nanoscale manufacturing. While this technology has predominantly been applied to logic and memory, it's now being used to create...
Saved in:
Published in: | Computer (Long Beach, Calif.) Calif.), 2005-05, Vol.38 (6), p.99-101 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the past 50 years, computers have shrunk from room-size mainframes to lightweight handhelds. This fantastic miniaturization is primarily the result of high-volume nanoscale manufacturing. While this technology has predominantly been applied to logic and memory, it's now being used to create advanced microelectromechanical systems using both top-down and bottom-up processes. One possible outcome of continued progress in high-volume nanoscale assembly is the ability to inexpensively produce millimeter-scale units that integrate computing, sensing, actuation, and locomotion mechanisms. A collection of such units can be viewed as a form of programmable matter. |
---|---|
ISSN: | 0018-9162 1558-0814 |
DOI: | 10.1109/MC.2005.198 |