Loading…
A stable and convergent scheme for viscoelastic flow in contraction channels
We present a new algorithm to simulate unsteady viscoelastic flows in abrupt contraction channels. In our approach we split the viscoelastic terms of the Oldroyd-B constitutive equation using Duhamel’s formula and discretize the resulting PDEs using a semi-implicit finite difference method based on...
Saved in:
Published in: | Journal of computational physics 2005-05, Vol.205 (1), p.315-342 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a new algorithm to simulate unsteady viscoelastic flows in abrupt contraction channels. In our approach we split the viscoelastic terms of the Oldroyd-B constitutive equation using Duhamel’s formula and discretize the resulting PDEs using a semi-implicit finite difference method based on a Lax–Wendroff method for hyperbolic terms. In particular, we leave a small residual elastic term in the viscous limit by design to make the hyperbolic piece well-posed. A projection method is used to impose the incompressibility constraint. We are able to compute the full range of unsteady elastic flows in an abrupt contraction channel – from the viscous limit to the elastic limit – in a stable and convergent manner. We demonstrate the range of our method for unsteady flow of a Maxwell fluid with and without viscosity in planar contraction channels. We also demonstrate stable and convergent results for benchmark high Weissenberg number problems at
We
=
1 and
We
=
10. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2004.11.007 |