Loading…
Cortical activity and spatiotemporal parameters during gait termination and walking: A preliminary study
Gait termination requires an interaction between the biomechanical and neuromuscular systems to arrest forward momentum. Currently, the biomechanical characteristics of gait termination have been demonstrated; however, the neural mechanism of gait termination remains unclear. This study aimed to inv...
Saved in:
Published in: | Behavioural brain research 2024-01, Vol.456, p.114701-114701, Article 114701 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gait termination requires an interaction between the biomechanical and neuromuscular systems to arrest forward momentum. Currently, the biomechanical characteristics of gait termination have been demonstrated; however, the neural mechanism of gait termination remains unclear. This study aimed to investigate cortical activity during gait termination using functional near-infrared spectroscopy (fNIRS). Thirteen healthy younger adults (mean age:24.0 ± 1.7) participated in this study. All participants performed three experimental sessions: planned gait termination (PGT), unplanned gait termination (UGT), and walking. Each experimental session comprised a block paradigm design (three cycles; 20 s resting, 45 s task). Cortical activity in the dorsolateral prefrontal cortex (DLPFC), supplementary motor area (SMA), and primary motor cortex (M1) and spatiotemporal parameters were measured. We compared the cortical activities and spatiotemporal parameters among PGT, UGT, and walking sessions. In addition, we performed Pearson correlations between hemodynamic responses and spatiotemporal parameters. The PGT was activated in the right DLPFC, whereas the UGT and walking were activated in the left SMA (p |
---|---|
ISSN: | 0166-4328 1872-7549 |
DOI: | 10.1016/j.bbr.2023.114701 |