Loading…

A Dual-Attention Learning Network with Word and Sentence Embedding for Medical Visual Question Answering

Research in medical visual question answering (MVQA) can contribute to the development of computer-aided diagnosis. MVQA is a task that aims to predict accurate and convincing answers based on given medical images and associated natural language questions. This task requires extracting medical knowl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2024-02, Vol.43 (2), p.1-1
Main Authors: Huang, Xiaofei, Gong, Hongfang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Research in medical visual question answering (MVQA) can contribute to the development of computer-aided diagnosis. MVQA is a task that aims to predict accurate and convincing answers based on given medical images and associated natural language questions. This task requires extracting medical knowledge-rich feature content and making fine-grained understandings of them. Therefore, constructing an effective feature extraction and understanding scheme are keys to modeling. Existing MVQA question extraction schemes mainly focus on word information, ignoring medical information in the text, such as medical concepts and domain-specific terms. Meanwhile, some visual and textual feature understanding schemes cannot effectively capture the correlation between regions and keywords for reasonable visual reasoning. In this study, a dual-attention learning network with word and sentence embedding (DALNet-WSE) is proposed. We design a module, transformer with sentence embedding (TSE), to extract a double embedding representation of questions containing keywords and medical information. A dual-attention learning (DAL) module consisting of self-attention and guided attention is proposed to model intensive intramodal and intermodal interactions. With multiple DAL modules (DALs), learning visual and textual co-attention can increase the granularity of understanding and improve visual reasoning. Experimental results on the ImageCLEF 2019 VQA-MED (VQA-MED 2019) and VQA-RAD datasets demonstrate that our proposed method outperforms previous state-of-the-art methods. According to the ablation studies and Grad-CAM maps, DALNet-WSE can extract rich textual information and has strong visual reasoning ability.
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2023.3322868