Loading…
Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study of the corrosion of alloy 22
Electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) are used to correlate crystallographic grain orientation with corrosion rates of polycrystalline alloy 22 following immersion in 1 and 3 molar (M) hydrochloric acid. For each acid concentration, relative corrosion rates are si...
Saved in:
Published in: | Surface science 2006-06, Vol.600 (12), p.2488-2494 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-b05888857bbd38e2f2a034b5f9853496803759031669c9774368d1ea1c0704843 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-b05888857bbd38e2f2a034b5f9853496803759031669c9774368d1ea1c0704843 |
container_end_page | 2494 |
container_issue | 12 |
container_start_page | 2488 |
container_title | Surface science |
container_volume | 600 |
creator | Gray, J.J. El Dasher, B.S. Orme, C.A. |
description | Electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) are used to correlate crystallographic grain orientation with corrosion rates of polycrystalline alloy 22 following immersion in 1 and 3 molar (M) hydrochloric acid. For each acid concentration, relative corrosion rates are simultaneously characterized for approximately 50 unique grain orientations. The results demonstrate that the corrosion rate anisotropies are markedly different in the two acid concentrations. In very aggressive acidic environments (3M HCl), where electrochemical impedance spectroscopy and spectroscopic ellipsometry data demonstrate that the passive oxide film of alloy 22 is completely dissolved, alloy dissolution rates scale inversely with the average coordination number of surface atoms for a given grain orientation, where highly correlated surfaces dissolve the slowest. Thus, similar to simple metallic systems, the corrosion rates scale with the surface plane-normal crystallographic orientations as {1
1
1}
<
{1
0
0}
<
{1
1
0}. Less intuitively, in milder corrosive environments (1M HCl), where the passive film of the alloy is still intact, the dissolution does not scale inversely with surface atomic density. Rather, corrosion rates scale with crystallographic orientations as {1
1
1}
<
{1
1
0}
<
{1
0
0}. This is attributed to the fact that facets most susceptible to corrosion (least coordinated) are also the most able to form protective oxides, so that the dissolution anisotropy is a result of the delicate balance between metal dissolution and oxide growth. |
doi_str_mv | 10.1016/j.susc.2006.04.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28757002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039602806003979</els_id><sourcerecordid>28757002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-b05888857bbd38e2f2a034b5f9853496803759031669c9774368d1ea1c0704843</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRBILC1_gJMvcEuYOB92EJdlaWmloh4KZ8uxx8KrJF48zkr7G_qnSbqVuHUuI3vee_P8nGUfSihKKNvP-4JmMgUHaAuoCwD-KtuUUnQ5F418nW0Aqi5vgcu32TuiPSxVd80me9yF8YDJJ39Ehs6hScSCYyMmPTDricIwJx8mpifLDprIH_XTeQx2HnRCy_oTozk6bZBRirNJc8QvbDux7fXPJ9rVt4fvy2i2p1U6_UFmQoyBVpnlQg9DODHOL7M3Tg-E75_7Rfb7-urX7ia_u_9xu9ve5abmIuU9NHKpRvS9rSRyxzVUdd-4TjZV3bUSKtF0UJVt25lOiLpqpS1RlwYE1LKuLrJPZ91DDH9npKRGTwaHQU8YZlJcikYsES5AfgaaxSxFdOoQ_ajjSZWg1tzVXq25qzV3BbU6kz4-q2syenBRT8bTf6aQQvJydfH1jMPlqUePUZHxOBm0Pi6_oGzwL635Bzl7mMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28757002</pqid></control><display><type>article</type><title>Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study of the corrosion of alloy 22</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Gray, J.J. ; El Dasher, B.S. ; Orme, C.A.</creator><creatorcontrib>Gray, J.J. ; El Dasher, B.S. ; Orme, C.A.</creatorcontrib><description>Electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) are used to correlate crystallographic grain orientation with corrosion rates of polycrystalline alloy 22 following immersion in 1 and 3 molar (M) hydrochloric acid. For each acid concentration, relative corrosion rates are simultaneously characterized for approximately 50 unique grain orientations. The results demonstrate that the corrosion rate anisotropies are markedly different in the two acid concentrations. In very aggressive acidic environments (3M HCl), where electrochemical impedance spectroscopy and spectroscopic ellipsometry data demonstrate that the passive oxide film of alloy 22 is completely dissolved, alloy dissolution rates scale inversely with the average coordination number of surface atoms for a given grain orientation, where highly correlated surfaces dissolve the slowest. Thus, similar to simple metallic systems, the corrosion rates scale with the surface plane-normal crystallographic orientations as {1
1
1}
<
{1
0
0}
<
{1
1
0}. Less intuitively, in milder corrosive environments (1M HCl), where the passive film of the alloy is still intact, the dissolution does not scale inversely with surface atomic density. Rather, corrosion rates scale with crystallographic orientations as {1
1
1}
<
{1
1
0}
<
{1
0
0}. This is attributed to the fact that facets most susceptible to corrosion (least coordinated) are also the most able to form protective oxides, so that the dissolution anisotropy is a result of the delicate balance between metal dissolution and oxide growth.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2006.04.002</identifier><identifier>CODEN: SUSCAS</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>AFM ; Alloy 22 ; Anisotropy ; Atomic force microscopy ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Corrosion ; Cross-disciplinary physics: materials science; rheology ; EBSD ; Electron backscatter diffraction ; Etching ; Exact sciences and technology ; Physics ; Surface structures</subject><ispartof>Surface science, 2006-06, Vol.600 (12), p.2488-2494</ispartof><rights>2006 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-b05888857bbd38e2f2a034b5f9853496803759031669c9774368d1ea1c0704843</citedby><cites>FETCH-LOGICAL-c427t-b05888857bbd38e2f2a034b5f9853496803759031669c9774368d1ea1c0704843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17878214$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gray, J.J.</creatorcontrib><creatorcontrib>El Dasher, B.S.</creatorcontrib><creatorcontrib>Orme, C.A.</creatorcontrib><title>Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study of the corrosion of alloy 22</title><title>Surface science</title><description>Electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) are used to correlate crystallographic grain orientation with corrosion rates of polycrystalline alloy 22 following immersion in 1 and 3 molar (M) hydrochloric acid. For each acid concentration, relative corrosion rates are simultaneously characterized for approximately 50 unique grain orientations. The results demonstrate that the corrosion rate anisotropies are markedly different in the two acid concentrations. In very aggressive acidic environments (3M HCl), where electrochemical impedance spectroscopy and spectroscopic ellipsometry data demonstrate that the passive oxide film of alloy 22 is completely dissolved, alloy dissolution rates scale inversely with the average coordination number of surface atoms for a given grain orientation, where highly correlated surfaces dissolve the slowest. Thus, similar to simple metallic systems, the corrosion rates scale with the surface plane-normal crystallographic orientations as {1
1
1}
<
{1
0
0}
<
{1
1
0}. Less intuitively, in milder corrosive environments (1M HCl), where the passive film of the alloy is still intact, the dissolution does not scale inversely with surface atomic density. Rather, corrosion rates scale with crystallographic orientations as {1
1
1}
<
{1
1
0}
<
{1
0
0}. This is attributed to the fact that facets most susceptible to corrosion (least coordinated) are also the most able to form protective oxides, so that the dissolution anisotropy is a result of the delicate balance between metal dissolution and oxide growth.</description><subject>AFM</subject><subject>Alloy 22</subject><subject>Anisotropy</subject><subject>Atomic force microscopy</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Corrosion</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>EBSD</subject><subject>Electron backscatter diffraction</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Surface structures</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1DAQjRBILC1_gJMvcEuYOB92EJdlaWmloh4KZ8uxx8KrJF48zkr7G_qnSbqVuHUuI3vee_P8nGUfSihKKNvP-4JmMgUHaAuoCwD-KtuUUnQ5F418nW0Aqi5vgcu32TuiPSxVd80me9yF8YDJJ39Ehs6hScSCYyMmPTDricIwJx8mpifLDprIH_XTeQx2HnRCy_oTozk6bZBRirNJc8QvbDux7fXPJ9rVt4fvy2i2p1U6_UFmQoyBVpnlQg9DODHOL7M3Tg-E75_7Rfb7-urX7ia_u_9xu9ve5abmIuU9NHKpRvS9rSRyxzVUdd-4TjZV3bUSKtF0UJVt25lOiLpqpS1RlwYE1LKuLrJPZ91DDH9npKRGTwaHQU8YZlJcikYsES5AfgaaxSxFdOoQ_ajjSZWg1tzVXq25qzV3BbU6kz4-q2syenBRT8bTf6aQQvJydfH1jMPlqUePUZHxOBm0Pi6_oGzwL635Bzl7mMo</recordid><startdate>20060615</startdate><enddate>20060615</enddate><creator>Gray, J.J.</creator><creator>El Dasher, B.S.</creator><creator>Orme, C.A.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20060615</creationdate><title>Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study of the corrosion of alloy 22</title><author>Gray, J.J. ; El Dasher, B.S. ; Orme, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-b05888857bbd38e2f2a034b5f9853496803759031669c9774368d1ea1c0704843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>AFM</topic><topic>Alloy 22</topic><topic>Anisotropy</topic><topic>Atomic force microscopy</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Corrosion</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>EBSD</topic><topic>Electron backscatter diffraction</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Surface structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gray, J.J.</creatorcontrib><creatorcontrib>El Dasher, B.S.</creatorcontrib><creatorcontrib>Orme, C.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gray, J.J.</au><au>El Dasher, B.S.</au><au>Orme, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study of the corrosion of alloy 22</atitle><jtitle>Surface science</jtitle><date>2006-06-15</date><risdate>2006</risdate><volume>600</volume><issue>12</issue><spage>2488</spage><epage>2494</epage><pages>2488-2494</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><coden>SUSCAS</coden><abstract>Electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) are used to correlate crystallographic grain orientation with corrosion rates of polycrystalline alloy 22 following immersion in 1 and 3 molar (M) hydrochloric acid. For each acid concentration, relative corrosion rates are simultaneously characterized for approximately 50 unique grain orientations. The results demonstrate that the corrosion rate anisotropies are markedly different in the two acid concentrations. In very aggressive acidic environments (3M HCl), where electrochemical impedance spectroscopy and spectroscopic ellipsometry data demonstrate that the passive oxide film of alloy 22 is completely dissolved, alloy dissolution rates scale inversely with the average coordination number of surface atoms for a given grain orientation, where highly correlated surfaces dissolve the slowest. Thus, similar to simple metallic systems, the corrosion rates scale with the surface plane-normal crystallographic orientations as {1
1
1}
<
{1
0
0}
<
{1
1
0}. Less intuitively, in milder corrosive environments (1M HCl), where the passive film of the alloy is still intact, the dissolution does not scale inversely with surface atomic density. Rather, corrosion rates scale with crystallographic orientations as {1
1
1}
<
{1
1
0}
<
{1
0
0}. This is attributed to the fact that facets most susceptible to corrosion (least coordinated) are also the most able to form protective oxides, so that the dissolution anisotropy is a result of the delicate balance between metal dissolution and oxide growth.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2006.04.002</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-6028 |
ispartof | Surface science, 2006-06, Vol.600 (12), p.2488-2494 |
issn | 0039-6028 1879-2758 |
language | eng |
recordid | cdi_proquest_miscellaneous_28757002 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | AFM Alloy 22 Anisotropy Atomic force microscopy Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Corrosion Cross-disciplinary physics: materials science rheology EBSD Electron backscatter diffraction Etching Exact sciences and technology Physics Surface structures |
title | Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study of the corrosion of alloy 22 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competitive%20effects%20of%20metal%20dissolution%20and%20passivation%20modulated%20by%20surface%20structure:%20An%20AFM%20and%20EBSD%20study%20of%20the%20corrosion%20of%20alloy%2022&rft.jtitle=Surface%20science&rft.au=Gray,%20J.J.&rft.date=2006-06-15&rft.volume=600&rft.issue=12&rft.spage=2488&rft.epage=2494&rft.pages=2488-2494&rft.issn=0039-6028&rft.eissn=1879-2758&rft.coden=SUSCAS&rft_id=info:doi/10.1016/j.susc.2006.04.002&rft_dat=%3Cproquest_cross%3E28757002%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-b05888857bbd38e2f2a034b5f9853496803759031669c9774368d1ea1c0704843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28757002&rft_id=info:pmid/&rfr_iscdi=true |