Loading…

Stability of bacteriophages in organic solvents for formulations

[Display omitted] Bacteriophages or phages used as an alternative therapy for treating multi-drug resistant infections require formulation consideration. Current strategies to produce phage formulations involving organic solvents are based on empirical practices without a good understanding of phage...

Full description

Saved in:
Bibliographic Details
Published in:International journal of pharmaceutics 2023-11, Vol.646, p.123505-123505, Article 123505
Main Authors: Cao, Yue, Khanal, Dipesh, Kim, Jinhee, Chang, Rachel Yoon Kyung, Byun, Alex Seungyeon, Morales, Sandra, Banaszak Holl, Mark M., Chan, Hak-Kim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Bacteriophages or phages used as an alternative therapy for treating multi-drug resistant infections require formulation consideration. Current strategies to produce phage formulations involving organic solvents are based on empirical practices without a good understanding of phage stability during formulation development. In this study, we investigated the effect of common formulation organic solvents (ethanol, isopropyl alcohol, tetrahydrofuran (THF) and dimethyl sulfoxide (DMSO)) on the stability of Pseudomonas aeruginosa-specific myovirus (PEV1, PEV20) and podovirus (PEV31) phages using biological assay, transmission electron microscopy (TEM) and scattering near field optical microscopy (SNOM). The three phages were mixed with the solvents at different concentrations (25%, 50%, and 75% (v/v)) for 20 min. All phages were fully viable in the organic solvents at 25% (v/v) showing negligible titre changes. At the higher solvent concentration of 50% (v/v), the myoviruses PEV1 and PEV20 remained relatively stable (titre loss 0.4–1.3 log10), whereas the podovirus PEV31 became less stable (titre loss 0.25–3.8 log10), depending on the solvent used. Increasing the solvent level to 75% (v/v) caused increased morphological changes in TEM and decreased viability as indicated by the titre loss (0.32–7.4 log10), with DMSO being the most phage-destabilising solvent. SNOM spectra showed differences in the signal intensity and peak positions in the amide I and amide II regions, revealing altered phage proteins by the solvents. In conclusion, the choice of the solvents for phage formulation depends on both the phages and solvent types. Our results showed (1) the phages are more stable in the alcohols than DMSO and THF, and (2) the myoviruses tend to be more stable than the podovirus in the solvents. Overall, a low to moderate (25–50 % v/v) level of organic solvents (except 50% THF) can be used in formulation of the phages without a substantial titre loss.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2023.123505