Loading…
A high sensitivity hydrostatic piezoelectric transducer based on transverse piezoelectric mode honeycomb ceramic composites
A new piezoelectric composite transducer based on the ceramic honeycomb structure is introduced. The transducer is operated in the transverse piezoelectric (TP) d/sub 31/ mode. The ceramic honeycomb configuration enables one to fabricate a TP honeycomb transducer by either embedding a honeycomb cera...
Saved in:
Published in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 1996-01, Vol.43 (1), p.36-43 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new piezoelectric composite transducer based on the ceramic honeycomb structure is introduced. The transducer is operated in the transverse piezoelectric (TP) d/sub 31/ mode. The ceramic honeycomb configuration enables one to fabricate a TP honeycomb transducer by either embedding a honeycomb ceramic skeleton into a soft polymer matrix to form a composite or by blocking the openings of the honeycomb cells with thin layers of epoxy to form an end-capped honeycomb structure. With the unique honeycomb configuration and TP operation mode, the piezoelectric d/sub 33/ response of the ceramic is nearly eliminated and the piezoelectric responses from the three orthogonal directions add together when the transducer is subjected to a hydrostatic pressure. As a result, the transducer exhibits exceptionally high hydrostatic piezoelectric response. |
---|---|
ISSN: | 0885-3010 1525-8955 |
DOI: | 10.1109/58.484461 |