Loading…

Improved reduction efficiency, cycling performance, and removal rate of hexavalent chromium by adding water-soluble salts

Recently, the reaction speed and cycle performance of hexavalent chromium reduction over microsized zero-valent iron (ZVI) with an Fe 0 core and iron oxide (FeO x ) shell structure have been improved by activating the Fe 0 -core electrons through electromagnetic coupling between Fe 0 -core electrons...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2023-11, Vol.30 (53), p.113553-113560
Main Authors: He, Junfeng, Liang, Yuheng, Huang, Hao, Zhai, Wangjian, He, Qinyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-38e92478525823f11a0575c5a1c940ed74c654d221b3b9b20ff2d39fcaba6d43
cites cdi_FETCH-LOGICAL-c375t-38e92478525823f11a0575c5a1c940ed74c654d221b3b9b20ff2d39fcaba6d43
container_end_page 113560
container_issue 53
container_start_page 113553
container_title Environmental science and pollution research international
container_volume 30
creator He, Junfeng
Liang, Yuheng
Huang, Hao
Zhai, Wangjian
He, Qinyu
description Recently, the reaction speed and cycle performance of hexavalent chromium reduction over microsized zero-valent iron (ZVI) with an Fe 0 core and iron oxide (FeO x ) shell structure have been improved by activating the Fe 0 -core electrons through electromagnetic coupling between Fe 0 -core electrons and charges (hexavalent chromium in solution, double-charge layers of the ZVI/solution interface). Herein, the abovementioned electromagnetic coupling was greatly increased by adding salt (CH 3 COONa, NaCl, NaNO 3 , and Na 2 SO 4 ) in the hexavalent chromium solution to increase the charge response. Adding salt greatly improved the reaction speed and cycle performance of hexavalent chromium reduction. It took 8 min to reduce hexavalent chromium with CH 3 COONa to below the discharge standard of wastewater in the first cycle and 20 min after reducing for 20 cycles. The best apparent rate of constant value (0.416 (min) -1 ) is nearly four times larger than those without salts. X-ray diffraction and X-ray photoelectron spectroscopy revealed the production of amorphous iron oxide shell with salt. The salt improves the hexavalent chromium reduction speed and cycle performance and impedes the Fe 0 -core-electron transfer via the produced Fe 2 O 3 , resulting in existence of an optimized salt dosage. This work aims to provide an effective route for enhancing the removal efficiency and cycle performance of heavy-metal–ion reduction via Fe 0 . And this work also proposes a novel viewpoint that adding salt in waste water would increase the electromagnetic coupling between the charges in solution and Fe 0 -core electrons which could finally activate the redox reaction.
doi_str_mv 10.1007/s11356-023-30138-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2878710442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878710442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-38e92478525823f11a0575c5a1c940ed74c654d221b3b9b20ff2d39fcaba6d43</originalsourceid><addsrcrecordid>eNp9kU9PHCEYh0lj07W2X6CHhsSLB8fyb5bhaDbamph48U4YeNkdMwNbmNk6376sa6vx4AkIz-_HSx6EvlFyQQmRPzKlvF5WhPGKE8qbav6AjumSikoKpY5e7Rfoc84PhDCimPyEFlw2NWWiOUbzzbBNcQcOJ3CTHbsYMHjf2Q6Cnc-xnW3fhTXeQvIxDSZYOMcm7PEh7kyPkxkBR4838GjKGcKI7SbFoZsG3M7YOLeP_ylUqnLsp7YHnE0_5i_oozd9hq_P6wm6v766X_2qbu9-3qwubyvLZT1WvAHFRJmX1Q3jnlJDalnb2lCrBAEnhV3WwjFGW96qlhHvmePKW9OapRP8BJ0dass3f0-QRz102ULfmwBxypo1spGUCMEKevoGfYhTCmW4QimqpKTNvpAdKJtizgm83qZuMGnWlOi9F33woosX_eRFzyX0_bl6agdw_yP_RBSAH4BcrsIa0svb79T-BU-fmk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891977184</pqid></control><display><type>article</type><title>Improved reduction efficiency, cycling performance, and removal rate of hexavalent chromium by adding water-soluble salts</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>He, Junfeng ; Liang, Yuheng ; Huang, Hao ; Zhai, Wangjian ; He, Qinyu</creator><creatorcontrib>He, Junfeng ; Liang, Yuheng ; Huang, Hao ; Zhai, Wangjian ; He, Qinyu</creatorcontrib><description>Recently, the reaction speed and cycle performance of hexavalent chromium reduction over microsized zero-valent iron (ZVI) with an Fe 0 core and iron oxide (FeO x ) shell structure have been improved by activating the Fe 0 -core electrons through electromagnetic coupling between Fe 0 -core electrons and charges (hexavalent chromium in solution, double-charge layers of the ZVI/solution interface). Herein, the abovementioned electromagnetic coupling was greatly increased by adding salt (CH 3 COONa, NaCl, NaNO 3 , and Na 2 SO 4 ) in the hexavalent chromium solution to increase the charge response. Adding salt greatly improved the reaction speed and cycle performance of hexavalent chromium reduction. It took 8 min to reduce hexavalent chromium with CH 3 COONa to below the discharge standard of wastewater in the first cycle and 20 min after reducing for 20 cycles. The best apparent rate of constant value (0.416 (min) -1 ) is nearly four times larger than those without salts. X-ray diffraction and X-ray photoelectron spectroscopy revealed the production of amorphous iron oxide shell with salt. The salt improves the hexavalent chromium reduction speed and cycle performance and impedes the Fe 0 -core-electron transfer via the produced Fe 2 O 3 , resulting in existence of an optimized salt dosage. This work aims to provide an effective route for enhancing the removal efficiency and cycle performance of heavy-metal–ion reduction via Fe 0 . And this work also proposes a novel viewpoint that adding salt in waste water would increase the electromagnetic coupling between the charges in solution and Fe 0 -core electrons which could finally activate the redox reaction.</description><identifier>ISSN: 1614-7499</identifier><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-023-30138-y</identifier><identifier>PMID: 37851248</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Chromium ; Chromium - chemistry ; Earth and Environmental Science ; Ecotoxicology ; Efficiency ; Electromagnetic coupling ; Electromagnetism ; Electron transfer ; Electrons ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Ferric Compounds ; Ferric oxide ; Heavy metals ; Hexavalent chromium ; Iron - chemistry ; Iron oxides ; Photoelectron spectroscopy ; Photoelectrons ; Reagents ; Redox reactions ; Research Article ; Salt ; Salts ; Shells (structural forms) ; Sodium ; Sodium acetate ; Sodium chloride ; Sodium sulfate ; Toxicity ; Waste Water Technology ; Wastewater ; Water Management ; Water Pollutants, Chemical - analysis ; Water Pollution Control ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Environmental science and pollution research international, 2023-11, Vol.30 (53), p.113553-113560</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-38e92478525823f11a0575c5a1c940ed74c654d221b3b9b20ff2d39fcaba6d43</citedby><cites>FETCH-LOGICAL-c375t-38e92478525823f11a0575c5a1c940ed74c654d221b3b9b20ff2d39fcaba6d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2891977184/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2891977184?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37851248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Junfeng</creatorcontrib><creatorcontrib>Liang, Yuheng</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Zhai, Wangjian</creatorcontrib><creatorcontrib>He, Qinyu</creatorcontrib><title>Improved reduction efficiency, cycling performance, and removal rate of hexavalent chromium by adding water-soluble salts</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Recently, the reaction speed and cycle performance of hexavalent chromium reduction over microsized zero-valent iron (ZVI) with an Fe 0 core and iron oxide (FeO x ) shell structure have been improved by activating the Fe 0 -core electrons through electromagnetic coupling between Fe 0 -core electrons and charges (hexavalent chromium in solution, double-charge layers of the ZVI/solution interface). Herein, the abovementioned electromagnetic coupling was greatly increased by adding salt (CH 3 COONa, NaCl, NaNO 3 , and Na 2 SO 4 ) in the hexavalent chromium solution to increase the charge response. Adding salt greatly improved the reaction speed and cycle performance of hexavalent chromium reduction. It took 8 min to reduce hexavalent chromium with CH 3 COONa to below the discharge standard of wastewater in the first cycle and 20 min after reducing for 20 cycles. The best apparent rate of constant value (0.416 (min) -1 ) is nearly four times larger than those without salts. X-ray diffraction and X-ray photoelectron spectroscopy revealed the production of amorphous iron oxide shell with salt. The salt improves the hexavalent chromium reduction speed and cycle performance and impedes the Fe 0 -core-electron transfer via the produced Fe 2 O 3 , resulting in existence of an optimized salt dosage. This work aims to provide an effective route for enhancing the removal efficiency and cycle performance of heavy-metal–ion reduction via Fe 0 . And this work also proposes a novel viewpoint that adding salt in waste water would increase the electromagnetic coupling between the charges in solution and Fe 0 -core electrons which could finally activate the redox reaction.</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Chromium</subject><subject>Chromium - chemistry</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Efficiency</subject><subject>Electromagnetic coupling</subject><subject>Electromagnetism</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Ferric Compounds</subject><subject>Ferric oxide</subject><subject>Heavy metals</subject><subject>Hexavalent chromium</subject><subject>Iron - chemistry</subject><subject>Iron oxides</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Reagents</subject><subject>Redox reactions</subject><subject>Research Article</subject><subject>Salt</subject><subject>Salts</subject><subject>Shells (structural forms)</subject><subject>Sodium</subject><subject>Sodium acetate</subject><subject>Sodium chloride</subject><subject>Sodium sulfate</subject><subject>Toxicity</subject><subject>Waste Water Technology</subject><subject>Wastewater</subject><subject>Water Management</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollution Control</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>1614-7499</issn><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kU9PHCEYh0lj07W2X6CHhsSLB8fyb5bhaDbamph48U4YeNkdMwNbmNk6376sa6vx4AkIz-_HSx6EvlFyQQmRPzKlvF5WhPGKE8qbav6AjumSikoKpY5e7Rfoc84PhDCimPyEFlw2NWWiOUbzzbBNcQcOJ3CTHbsYMHjf2Q6Cnc-xnW3fhTXeQvIxDSZYOMcm7PEh7kyPkxkBR4838GjKGcKI7SbFoZsG3M7YOLeP_ylUqnLsp7YHnE0_5i_oozd9hq_P6wm6v766X_2qbu9-3qwubyvLZT1WvAHFRJmX1Q3jnlJDalnb2lCrBAEnhV3WwjFGW96qlhHvmePKW9OapRP8BJ0dass3f0-QRz102ULfmwBxypo1spGUCMEKevoGfYhTCmW4QimqpKTNvpAdKJtizgm83qZuMGnWlOi9F33woosX_eRFzyX0_bl6agdw_yP_RBSAH4BcrsIa0svb79T-BU-fmk8</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>He, Junfeng</creator><creator>Liang, Yuheng</creator><creator>Huang, Hao</creator><creator>Zhai, Wangjian</creator><creator>He, Qinyu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20231101</creationdate><title>Improved reduction efficiency, cycling performance, and removal rate of hexavalent chromium by adding water-soluble salts</title><author>He, Junfeng ; Liang, Yuheng ; Huang, Hao ; Zhai, Wangjian ; He, Qinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-38e92478525823f11a0575c5a1c940ed74c654d221b3b9b20ff2d39fcaba6d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Chromium</topic><topic>Chromium - chemistry</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Efficiency</topic><topic>Electromagnetic coupling</topic><topic>Electromagnetism</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Ferric Compounds</topic><topic>Ferric oxide</topic><topic>Heavy metals</topic><topic>Hexavalent chromium</topic><topic>Iron - chemistry</topic><topic>Iron oxides</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Reagents</topic><topic>Redox reactions</topic><topic>Research Article</topic><topic>Salt</topic><topic>Salts</topic><topic>Shells (structural forms)</topic><topic>Sodium</topic><topic>Sodium acetate</topic><topic>Sodium chloride</topic><topic>Sodium sulfate</topic><topic>Toxicity</topic><topic>Waste Water Technology</topic><topic>Wastewater</topic><topic>Water Management</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollution Control</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Junfeng</creatorcontrib><creatorcontrib>Liang, Yuheng</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Zhai, Wangjian</creatorcontrib><creatorcontrib>He, Qinyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Junfeng</au><au>Liang, Yuheng</au><au>Huang, Hao</au><au>Zhai, Wangjian</au><au>He, Qinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved reduction efficiency, cycling performance, and removal rate of hexavalent chromium by adding water-soluble salts</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>30</volume><issue>53</issue><spage>113553</spage><epage>113560</epage><pages>113553-113560</pages><issn>1614-7499</issn><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Recently, the reaction speed and cycle performance of hexavalent chromium reduction over microsized zero-valent iron (ZVI) with an Fe 0 core and iron oxide (FeO x ) shell structure have been improved by activating the Fe 0 -core electrons through electromagnetic coupling between Fe 0 -core electrons and charges (hexavalent chromium in solution, double-charge layers of the ZVI/solution interface). Herein, the abovementioned electromagnetic coupling was greatly increased by adding salt (CH 3 COONa, NaCl, NaNO 3 , and Na 2 SO 4 ) in the hexavalent chromium solution to increase the charge response. Adding salt greatly improved the reaction speed and cycle performance of hexavalent chromium reduction. It took 8 min to reduce hexavalent chromium with CH 3 COONa to below the discharge standard of wastewater in the first cycle and 20 min after reducing for 20 cycles. The best apparent rate of constant value (0.416 (min) -1 ) is nearly four times larger than those without salts. X-ray diffraction and X-ray photoelectron spectroscopy revealed the production of amorphous iron oxide shell with salt. The salt improves the hexavalent chromium reduction speed and cycle performance and impedes the Fe 0 -core-electron transfer via the produced Fe 2 O 3 , resulting in existence of an optimized salt dosage. This work aims to provide an effective route for enhancing the removal efficiency and cycle performance of heavy-metal–ion reduction via Fe 0 . And this work also proposes a novel viewpoint that adding salt in waste water would increase the electromagnetic coupling between the charges in solution and Fe 0 -core electrons which could finally activate the redox reaction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37851248</pmid><doi>10.1007/s11356-023-30138-y</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-7499
ispartof Environmental science and pollution research international, 2023-11, Vol.30 (53), p.113553-113560
issn 1614-7499
0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_2878710442
source ABI/INFORM Global (ProQuest); Springer Nature
subjects Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Chromium
Chromium - chemistry
Earth and Environmental Science
Ecotoxicology
Efficiency
Electromagnetic coupling
Electromagnetism
Electron transfer
Electrons
Environment
Environmental Chemistry
Environmental Health
Environmental science
Ferric Compounds
Ferric oxide
Heavy metals
Hexavalent chromium
Iron - chemistry
Iron oxides
Photoelectron spectroscopy
Photoelectrons
Reagents
Redox reactions
Research Article
Salt
Salts
Shells (structural forms)
Sodium
Sodium acetate
Sodium chloride
Sodium sulfate
Toxicity
Waste Water Technology
Wastewater
Water Management
Water Pollutants, Chemical - analysis
Water Pollution Control
X ray photoelectron spectroscopy
X-ray diffraction
title Improved reduction efficiency, cycling performance, and removal rate of hexavalent chromium by adding water-soluble salts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20reduction%20efficiency,%20cycling%20performance,%20and%20removal%20rate%20of%20hexavalent%20chromium%20by%20adding%20water-soluble%20salts&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=He,%20Junfeng&rft.date=2023-11-01&rft.volume=30&rft.issue=53&rft.spage=113553&rft.epage=113560&rft.pages=113553-113560&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-023-30138-y&rft_dat=%3Cproquest_cross%3E2878710442%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-38e92478525823f11a0575c5a1c940ed74c654d221b3b9b20ff2d39fcaba6d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2891977184&rft_id=info:pmid/37851248&rfr_iscdi=true