Loading…
Improved reduction efficiency, cycling performance, and removal rate of hexavalent chromium by adding water-soluble salts
Recently, the reaction speed and cycle performance of hexavalent chromium reduction over microsized zero-valent iron (ZVI) with an Fe 0 core and iron oxide (FeO x ) shell structure have been improved by activating the Fe 0 -core electrons through electromagnetic coupling between Fe 0 -core electrons...
Saved in:
Published in: | Environmental science and pollution research international 2023-11, Vol.30 (53), p.113553-113560 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-38e92478525823f11a0575c5a1c940ed74c654d221b3b9b20ff2d39fcaba6d43 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-38e92478525823f11a0575c5a1c940ed74c654d221b3b9b20ff2d39fcaba6d43 |
container_end_page | 113560 |
container_issue | 53 |
container_start_page | 113553 |
container_title | Environmental science and pollution research international |
container_volume | 30 |
creator | He, Junfeng Liang, Yuheng Huang, Hao Zhai, Wangjian He, Qinyu |
description | Recently, the reaction speed and cycle performance of hexavalent chromium reduction over microsized zero-valent iron (ZVI) with an Fe
0
core and iron oxide (FeO
x
) shell structure have been improved by activating the Fe
0
-core electrons through electromagnetic coupling between Fe
0
-core electrons and charges (hexavalent chromium in solution, double-charge layers of the ZVI/solution interface). Herein, the abovementioned electromagnetic coupling was greatly increased by adding salt (CH
3
COONa, NaCl, NaNO
3
, and Na
2
SO
4
) in the hexavalent chromium solution to increase the charge response. Adding salt greatly improved the reaction speed and cycle performance of hexavalent chromium reduction. It took 8 min to reduce hexavalent chromium with CH
3
COONa to below the discharge standard of wastewater in the first cycle and 20 min after reducing for 20 cycles. The best apparent rate of constant value (0.416 (min)
-1
) is nearly four times larger than those without salts. X-ray diffraction and X-ray photoelectron spectroscopy revealed the production of amorphous iron oxide shell with salt. The salt improves the hexavalent chromium reduction speed and cycle performance and impedes the Fe
0
-core-electron transfer via the produced Fe
2
O
3
, resulting in existence of an optimized salt dosage. This work aims to provide an effective route for enhancing the removal efficiency and cycle performance of heavy-metal–ion reduction via Fe
0
. And this work also proposes a novel viewpoint that adding salt in waste water would increase the electromagnetic coupling between the charges in solution and Fe
0
-core electrons which could finally activate the redox reaction. |
doi_str_mv | 10.1007/s11356-023-30138-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2878710442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878710442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-38e92478525823f11a0575c5a1c940ed74c654d221b3b9b20ff2d39fcaba6d43</originalsourceid><addsrcrecordid>eNp9kU9PHCEYh0lj07W2X6CHhsSLB8fyb5bhaDbamph48U4YeNkdMwNbmNk6376sa6vx4AkIz-_HSx6EvlFyQQmRPzKlvF5WhPGKE8qbav6AjumSikoKpY5e7Rfoc84PhDCimPyEFlw2NWWiOUbzzbBNcQcOJ3CTHbsYMHjf2Q6Cnc-xnW3fhTXeQvIxDSZYOMcm7PEh7kyPkxkBR4838GjKGcKI7SbFoZsG3M7YOLeP_ylUqnLsp7YHnE0_5i_oozd9hq_P6wm6v766X_2qbu9-3qwubyvLZT1WvAHFRJmX1Q3jnlJDalnb2lCrBAEnhV3WwjFGW96qlhHvmePKW9OapRP8BJ0dass3f0-QRz102ULfmwBxypo1spGUCMEKevoGfYhTCmW4QimqpKTNvpAdKJtizgm83qZuMGnWlOi9F33woosX_eRFzyX0_bl6agdw_yP_RBSAH4BcrsIa0svb79T-BU-fmk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891977184</pqid></control><display><type>article</type><title>Improved reduction efficiency, cycling performance, and removal rate of hexavalent chromium by adding water-soluble salts</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>He, Junfeng ; Liang, Yuheng ; Huang, Hao ; Zhai, Wangjian ; He, Qinyu</creator><creatorcontrib>He, Junfeng ; Liang, Yuheng ; Huang, Hao ; Zhai, Wangjian ; He, Qinyu</creatorcontrib><description>Recently, the reaction speed and cycle performance of hexavalent chromium reduction over microsized zero-valent iron (ZVI) with an Fe
0
core and iron oxide (FeO
x
) shell structure have been improved by activating the Fe
0
-core electrons through electromagnetic coupling between Fe
0
-core electrons and charges (hexavalent chromium in solution, double-charge layers of the ZVI/solution interface). Herein, the abovementioned electromagnetic coupling was greatly increased by adding salt (CH
3
COONa, NaCl, NaNO
3
, and Na
2
SO
4
) in the hexavalent chromium solution to increase the charge response. Adding salt greatly improved the reaction speed and cycle performance of hexavalent chromium reduction. It took 8 min to reduce hexavalent chromium with CH
3
COONa to below the discharge standard of wastewater in the first cycle and 20 min after reducing for 20 cycles. The best apparent rate of constant value (0.416 (min)
-1
) is nearly four times larger than those without salts. X-ray diffraction and X-ray photoelectron spectroscopy revealed the production of amorphous iron oxide shell with salt. The salt improves the hexavalent chromium reduction speed and cycle performance and impedes the Fe
0
-core-electron transfer via the produced Fe
2
O
3
, resulting in existence of an optimized salt dosage. This work aims to provide an effective route for enhancing the removal efficiency and cycle performance of heavy-metal–ion reduction via Fe
0
. And this work also proposes a novel viewpoint that adding salt in waste water would increase the electromagnetic coupling between the charges in solution and Fe
0
-core electrons which could finally activate the redox reaction.</description><identifier>ISSN: 1614-7499</identifier><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-023-30138-y</identifier><identifier>PMID: 37851248</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Chromium ; Chromium - chemistry ; Earth and Environmental Science ; Ecotoxicology ; Efficiency ; Electromagnetic coupling ; Electromagnetism ; Electron transfer ; Electrons ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Ferric Compounds ; Ferric oxide ; Heavy metals ; Hexavalent chromium ; Iron - chemistry ; Iron oxides ; Photoelectron spectroscopy ; Photoelectrons ; Reagents ; Redox reactions ; Research Article ; Salt ; Salts ; Shells (structural forms) ; Sodium ; Sodium acetate ; Sodium chloride ; Sodium sulfate ; Toxicity ; Waste Water Technology ; Wastewater ; Water Management ; Water Pollutants, Chemical - analysis ; Water Pollution Control ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Environmental science and pollution research international, 2023-11, Vol.30 (53), p.113553-113560</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-38e92478525823f11a0575c5a1c940ed74c654d221b3b9b20ff2d39fcaba6d43</citedby><cites>FETCH-LOGICAL-c375t-38e92478525823f11a0575c5a1c940ed74c654d221b3b9b20ff2d39fcaba6d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2891977184/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2891977184?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37851248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Junfeng</creatorcontrib><creatorcontrib>Liang, Yuheng</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Zhai, Wangjian</creatorcontrib><creatorcontrib>He, Qinyu</creatorcontrib><title>Improved reduction efficiency, cycling performance, and removal rate of hexavalent chromium by adding water-soluble salts</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Recently, the reaction speed and cycle performance of hexavalent chromium reduction over microsized zero-valent iron (ZVI) with an Fe
0
core and iron oxide (FeO
x
) shell structure have been improved by activating the Fe
0
-core electrons through electromagnetic coupling between Fe
0
-core electrons and charges (hexavalent chromium in solution, double-charge layers of the ZVI/solution interface). Herein, the abovementioned electromagnetic coupling was greatly increased by adding salt (CH
3
COONa, NaCl, NaNO
3
, and Na
2
SO
4
) in the hexavalent chromium solution to increase the charge response. Adding salt greatly improved the reaction speed and cycle performance of hexavalent chromium reduction. It took 8 min to reduce hexavalent chromium with CH
3
COONa to below the discharge standard of wastewater in the first cycle and 20 min after reducing for 20 cycles. The best apparent rate of constant value (0.416 (min)
-1
) is nearly four times larger than those without salts. X-ray diffraction and X-ray photoelectron spectroscopy revealed the production of amorphous iron oxide shell with salt. The salt improves the hexavalent chromium reduction speed and cycle performance and impedes the Fe
0
-core-electron transfer via the produced Fe
2
O
3
, resulting in existence of an optimized salt dosage. This work aims to provide an effective route for enhancing the removal efficiency and cycle performance of heavy-metal–ion reduction via Fe
0
. And this work also proposes a novel viewpoint that adding salt in waste water would increase the electromagnetic coupling between the charges in solution and Fe
0
-core electrons which could finally activate the redox reaction.</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Chromium</subject><subject>Chromium - chemistry</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Efficiency</subject><subject>Electromagnetic coupling</subject><subject>Electromagnetism</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Ferric Compounds</subject><subject>Ferric oxide</subject><subject>Heavy metals</subject><subject>Hexavalent chromium</subject><subject>Iron - chemistry</subject><subject>Iron oxides</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Reagents</subject><subject>Redox reactions</subject><subject>Research Article</subject><subject>Salt</subject><subject>Salts</subject><subject>Shells (structural forms)</subject><subject>Sodium</subject><subject>Sodium acetate</subject><subject>Sodium chloride</subject><subject>Sodium sulfate</subject><subject>Toxicity</subject><subject>Waste Water Technology</subject><subject>Wastewater</subject><subject>Water Management</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollution Control</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>1614-7499</issn><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kU9PHCEYh0lj07W2X6CHhsSLB8fyb5bhaDbamph48U4YeNkdMwNbmNk6376sa6vx4AkIz-_HSx6EvlFyQQmRPzKlvF5WhPGKE8qbav6AjumSikoKpY5e7Rfoc84PhDCimPyEFlw2NWWiOUbzzbBNcQcOJ3CTHbsYMHjf2Q6Cnc-xnW3fhTXeQvIxDSZYOMcm7PEh7kyPkxkBR4838GjKGcKI7SbFoZsG3M7YOLeP_ylUqnLsp7YHnE0_5i_oozd9hq_P6wm6v766X_2qbu9-3qwubyvLZT1WvAHFRJmX1Q3jnlJDalnb2lCrBAEnhV3WwjFGW96qlhHvmePKW9OapRP8BJ0dass3f0-QRz102ULfmwBxypo1spGUCMEKevoGfYhTCmW4QimqpKTNvpAdKJtizgm83qZuMGnWlOi9F33woosX_eRFzyX0_bl6agdw_yP_RBSAH4BcrsIa0svb79T-BU-fmk8</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>He, Junfeng</creator><creator>Liang, Yuheng</creator><creator>Huang, Hao</creator><creator>Zhai, Wangjian</creator><creator>He, Qinyu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20231101</creationdate><title>Improved reduction efficiency, cycling performance, and removal rate of hexavalent chromium by adding water-soluble salts</title><author>He, Junfeng ; Liang, Yuheng ; Huang, Hao ; Zhai, Wangjian ; He, Qinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-38e92478525823f11a0575c5a1c940ed74c654d221b3b9b20ff2d39fcaba6d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Chromium</topic><topic>Chromium - chemistry</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Efficiency</topic><topic>Electromagnetic coupling</topic><topic>Electromagnetism</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Ferric Compounds</topic><topic>Ferric oxide</topic><topic>Heavy metals</topic><topic>Hexavalent chromium</topic><topic>Iron - chemistry</topic><topic>Iron oxides</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Reagents</topic><topic>Redox reactions</topic><topic>Research Article</topic><topic>Salt</topic><topic>Salts</topic><topic>Shells (structural forms)</topic><topic>Sodium</topic><topic>Sodium acetate</topic><topic>Sodium chloride</topic><topic>Sodium sulfate</topic><topic>Toxicity</topic><topic>Waste Water Technology</topic><topic>Wastewater</topic><topic>Water Management</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollution Control</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Junfeng</creatorcontrib><creatorcontrib>Liang, Yuheng</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Zhai, Wangjian</creatorcontrib><creatorcontrib>He, Qinyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Junfeng</au><au>Liang, Yuheng</au><au>Huang, Hao</au><au>Zhai, Wangjian</au><au>He, Qinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved reduction efficiency, cycling performance, and removal rate of hexavalent chromium by adding water-soluble salts</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>30</volume><issue>53</issue><spage>113553</spage><epage>113560</epage><pages>113553-113560</pages><issn>1614-7499</issn><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Recently, the reaction speed and cycle performance of hexavalent chromium reduction over microsized zero-valent iron (ZVI) with an Fe
0
core and iron oxide (FeO
x
) shell structure have been improved by activating the Fe
0
-core electrons through electromagnetic coupling between Fe
0
-core electrons and charges (hexavalent chromium in solution, double-charge layers of the ZVI/solution interface). Herein, the abovementioned electromagnetic coupling was greatly increased by adding salt (CH
3
COONa, NaCl, NaNO
3
, and Na
2
SO
4
) in the hexavalent chromium solution to increase the charge response. Adding salt greatly improved the reaction speed and cycle performance of hexavalent chromium reduction. It took 8 min to reduce hexavalent chromium with CH
3
COONa to below the discharge standard of wastewater in the first cycle and 20 min after reducing for 20 cycles. The best apparent rate of constant value (0.416 (min)
-1
) is nearly four times larger than those without salts. X-ray diffraction and X-ray photoelectron spectroscopy revealed the production of amorphous iron oxide shell with salt. The salt improves the hexavalent chromium reduction speed and cycle performance and impedes the Fe
0
-core-electron transfer via the produced Fe
2
O
3
, resulting in existence of an optimized salt dosage. This work aims to provide an effective route for enhancing the removal efficiency and cycle performance of heavy-metal–ion reduction via Fe
0
. And this work also proposes a novel viewpoint that adding salt in waste water would increase the electromagnetic coupling between the charges in solution and Fe
0
-core electrons which could finally activate the redox reaction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37851248</pmid><doi>10.1007/s11356-023-30138-y</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-7499 |
ispartof | Environmental science and pollution research international, 2023-11, Vol.30 (53), p.113553-113560 |
issn | 1614-7499 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_2878710442 |
source | ABI/INFORM Global (ProQuest); Springer Nature |
subjects | Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Chromium Chromium - chemistry Earth and Environmental Science Ecotoxicology Efficiency Electromagnetic coupling Electromagnetism Electron transfer Electrons Environment Environmental Chemistry Environmental Health Environmental science Ferric Compounds Ferric oxide Heavy metals Hexavalent chromium Iron - chemistry Iron oxides Photoelectron spectroscopy Photoelectrons Reagents Redox reactions Research Article Salt Salts Shells (structural forms) Sodium Sodium acetate Sodium chloride Sodium sulfate Toxicity Waste Water Technology Wastewater Water Management Water Pollutants, Chemical - analysis Water Pollution Control X ray photoelectron spectroscopy X-ray diffraction |
title | Improved reduction efficiency, cycling performance, and removal rate of hexavalent chromium by adding water-soluble salts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20reduction%20efficiency,%20cycling%20performance,%20and%20removal%20rate%20of%20hexavalent%20chromium%20by%20adding%20water-soluble%20salts&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=He,%20Junfeng&rft.date=2023-11-01&rft.volume=30&rft.issue=53&rft.spage=113553&rft.epage=113560&rft.pages=113553-113560&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-023-30138-y&rft_dat=%3Cproquest_cross%3E2878710442%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-38e92478525823f11a0575c5a1c940ed74c654d221b3b9b20ff2d39fcaba6d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2891977184&rft_id=info:pmid/37851248&rfr_iscdi=true |