Loading…

Physical properties of the superconducting Ta film absorber of an X-ray photon detector

We have developed single-photon 1-D imaging detectors based on superconducting tunnel junctions. The devices have a Ta film with an Al/AlO/sub x//Al tunnel junction on each end and a Nb contact in the center. The best energy resolution of this kind of detector is 13 eV for 5.9 keV X-ray photons. Two...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2003-06, Vol.13 (2), p.1124-1127
Main Authors: Li, L., Frunzio, L., Wilson, C.M., Prober, D.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-f1095a43c06b628d2d362fc7882593684b504193d613daf9b219cdd436604bbd3
cites cdi_FETCH-LOGICAL-c380t-f1095a43c06b628d2d362fc7882593684b504193d613daf9b219cdd436604bbd3
container_end_page 1127
container_issue 2
container_start_page 1124
container_title IEEE transactions on applied superconductivity
container_volume 13
creator Li, L.
Frunzio, L.
Wilson, C.M.
Prober, D.E.
description We have developed single-photon 1-D imaging detectors based on superconducting tunnel junctions. The devices have a Ta film with an Al/AlO/sub x//Al tunnel junction on each end and a Nb contact in the center. The best energy resolution of this kind of detector is 13 eV for 5.9 keV X-ray photons. Two devices with different lengths: 500 and 1000 /spl mu/m are measured to study the nonequilibrium quasiparticle dynamics in the superconducting Ta film. The diffusion constant and lifetime of quasiparticles in the Ta films have been derived by fitting the measured current pulses to the model. The comparison of the simulation and measurement results proves that the quasiparticle loss is not primarily due to the Nb ground contact in the center of the Ta absorber, but is due to the uniform nonthermal loss in the Ta film. The Nb ground contact does contribute to the broadening of the energy width in the center of the Ta film.
doi_str_mv 10.1109/TASC.2003.814171
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28791153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1211804</ieee_id><sourcerecordid>28791153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-f1095a43c06b628d2d362fc7882593684b504193d613daf9b219cdd436604bbd3</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhosouK7eBS9B0FvXTD7a9CiLX7Cg4IreQpqkbpdusybtYf-9KV1Y8ORphplnhnfmTZJLwDMAXNwt79_nM4IxnQlgkMNRMgHORUo48OOYYw6pIISeJmchrDEGJhifJJ9vq12otWrQ1rut9V1tA3IV6lYWhT4WtGtNr7u6_UZLhaq62SBVBudL6wdOtegr9WqHtivXuRYZ21ndOX-enFSqCfZiH6fJx-PDcv6cLl6fXub3i1RTgbu0itK5YlTjrMyIMMTQjFQ6F4LwgmaClRwzKKjJgBpVFSWBQhvDaJZhVpaGTpPbcW-U_9Pb0MlNHbRtGtVa1wdJRF4AcPoPkANAQSJ4_Qdcu9638QhZEEIEyxmOEB4h7V0I3lZy6-uN8jsJWA5-yMEPOfghRz_iyM1-rwrx35VXra7DYY5zTnmWR-5q5Gpr7aFNAARm9BeFI5Hy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922284740</pqid></control><display><type>article</type><title>Physical properties of the superconducting Ta film absorber of an X-ray photon detector</title><source>IEEE Xplore (Online service)</source><creator>Li, L. ; Frunzio, L. ; Wilson, C.M. ; Prober, D.E.</creator><creatorcontrib>Li, L. ; Frunzio, L. ; Wilson, C.M. ; Prober, D.E.</creatorcontrib><description>We have developed single-photon 1-D imaging detectors based on superconducting tunnel junctions. The devices have a Ta film with an Al/AlO/sub x//Al tunnel junction on each end and a Nb contact in the center. The best energy resolution of this kind of detector is 13 eV for 5.9 keV X-ray photons. Two devices with different lengths: 500 and 1000 /spl mu/m are measured to study the nonequilibrium quasiparticle dynamics in the superconducting Ta film. The diffusion constant and lifetime of quasiparticles in the Ta films have been derived by fitting the measured current pulses to the model. The comparison of the simulation and measurement results proves that the quasiparticle loss is not primarily due to the Nb ground contact in the center of the Ta absorber, but is due to the uniform nonthermal loss in the Ta film. The Nb ground contact does contribute to the broadening of the energy width in the center of the Ta film.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2003.814171</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electronics ; Energy resolution ; Exact sciences and technology ; High-tc films ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Josephson junctions ; Length measurement ; Microelectronic fabrication (materials and surfaces technology) ; Niobium ; Optical imaging ; Physical properties ; Physics ; Pulse measurements ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Superconducting devices ; Superconducting films ; Superconducting films and low-dimensional structures ; Superconductivity ; X- and γ-ray instruments and techniques ; X- and γ-ray sources, mirrors, gratings and detectors ; X-ray detection ; X-ray detectors ; X-ray imaging</subject><ispartof>IEEE transactions on applied superconductivity, 2003-06, Vol.13 (2), p.1124-1127</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-f1095a43c06b628d2d362fc7882593684b504193d613daf9b219cdd436604bbd3</citedby><cites>FETCH-LOGICAL-c380t-f1095a43c06b628d2d362fc7882593684b504193d613daf9b219cdd436604bbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1211804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15553567$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Frunzio, L.</creatorcontrib><creatorcontrib>Wilson, C.M.</creatorcontrib><creatorcontrib>Prober, D.E.</creatorcontrib><title>Physical properties of the superconducting Ta film absorber of an X-ray photon detector</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We have developed single-photon 1-D imaging detectors based on superconducting tunnel junctions. The devices have a Ta film with an Al/AlO/sub x//Al tunnel junction on each end and a Nb contact in the center. The best energy resolution of this kind of detector is 13 eV for 5.9 keV X-ray photons. Two devices with different lengths: 500 and 1000 /spl mu/m are measured to study the nonequilibrium quasiparticle dynamics in the superconducting Ta film. The diffusion constant and lifetime of quasiparticles in the Ta films have been derived by fitting the measured current pulses to the model. The comparison of the simulation and measurement results proves that the quasiparticle loss is not primarily due to the Nb ground contact in the center of the Ta absorber, but is due to the uniform nonthermal loss in the Ta film. The Nb ground contact does contribute to the broadening of the energy width in the center of the Ta film.</description><subject>Applied sciences</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electronics</subject><subject>Energy resolution</subject><subject>Exact sciences and technology</subject><subject>High-tc films</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Josephson junctions</subject><subject>Length measurement</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Niobium</subject><subject>Optical imaging</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Pulse measurements</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Superconducting devices</subject><subject>Superconducting films</subject><subject>Superconducting films and low-dimensional structures</subject><subject>Superconductivity</subject><subject>X- and γ-ray instruments and techniques</subject><subject>X- and γ-ray sources, mirrors, gratings and detectors</subject><subject>X-ray detection</subject><subject>X-ray detectors</subject><subject>X-ray imaging</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhosouK7eBS9B0FvXTD7a9CiLX7Cg4IreQpqkbpdusybtYf-9KV1Y8ORphplnhnfmTZJLwDMAXNwt79_nM4IxnQlgkMNRMgHORUo48OOYYw6pIISeJmchrDEGJhifJJ9vq12otWrQ1rut9V1tA3IV6lYWhT4WtGtNr7u6_UZLhaq62SBVBudL6wdOtegr9WqHtivXuRYZ21ndOX-enFSqCfZiH6fJx-PDcv6cLl6fXub3i1RTgbu0itK5YlTjrMyIMMTQjFQ6F4LwgmaClRwzKKjJgBpVFSWBQhvDaJZhVpaGTpPbcW-U_9Pb0MlNHbRtGtVa1wdJRF4AcPoPkANAQSJ4_Qdcu9638QhZEEIEyxmOEB4h7V0I3lZy6-uN8jsJWA5-yMEPOfghRz_iyM1-rwrx35VXra7DYY5zTnmWR-5q5Gpr7aFNAARm9BeFI5Hy</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Li, L.</creator><creator>Frunzio, L.</creator><creator>Wilson, C.M.</creator><creator>Prober, D.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20030601</creationdate><title>Physical properties of the superconducting Ta film absorber of an X-ray photon detector</title><author>Li, L. ; Frunzio, L. ; Wilson, C.M. ; Prober, D.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-f1095a43c06b628d2d362fc7882593684b504193d613daf9b219cdd436604bbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electronics</topic><topic>Energy resolution</topic><topic>Exact sciences and technology</topic><topic>High-tc films</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Josephson junctions</topic><topic>Length measurement</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Niobium</topic><topic>Optical imaging</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Pulse measurements</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Superconducting devices</topic><topic>Superconducting films</topic><topic>Superconducting films and low-dimensional structures</topic><topic>Superconductivity</topic><topic>X- and γ-ray instruments and techniques</topic><topic>X- and γ-ray sources, mirrors, gratings and detectors</topic><topic>X-ray detection</topic><topic>X-ray detectors</topic><topic>X-ray imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Frunzio, L.</creatorcontrib><creatorcontrib>Wilson, C.M.</creatorcontrib><creatorcontrib>Prober, D.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, L.</au><au>Frunzio, L.</au><au>Wilson, C.M.</au><au>Prober, D.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical properties of the superconducting Ta film absorber of an X-ray photon detector</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2003-06-01</date><risdate>2003</risdate><volume>13</volume><issue>2</issue><spage>1124</spage><epage>1127</epage><pages>1124-1127</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We have developed single-photon 1-D imaging detectors based on superconducting tunnel junctions. The devices have a Ta film with an Al/AlO/sub x//Al tunnel junction on each end and a Nb contact in the center. The best energy resolution of this kind of detector is 13 eV for 5.9 keV X-ray photons. Two devices with different lengths: 500 and 1000 /spl mu/m are measured to study the nonequilibrium quasiparticle dynamics in the superconducting Ta film. The diffusion constant and lifetime of quasiparticles in the Ta films have been derived by fitting the measured current pulses to the model. The comparison of the simulation and measurement results proves that the quasiparticle loss is not primarily due to the Nb ground contact in the center of the Ta absorber, but is due to the uniform nonthermal loss in the Ta film. The Nb ground contact does contribute to the broadening of the energy width in the center of the Ta film.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2003.814171</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2003-06, Vol.13 (2), p.1124-1127
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_28791153
source IEEE Xplore (Online service)
subjects Applied sciences
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electronics
Energy resolution
Exact sciences and technology
High-tc films
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Josephson junctions
Length measurement
Microelectronic fabrication (materials and surfaces technology)
Niobium
Optical imaging
Physical properties
Physics
Pulse measurements
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Superconducting devices
Superconducting films
Superconducting films and low-dimensional structures
Superconductivity
X- and γ-ray instruments and techniques
X- and γ-ray sources, mirrors, gratings and detectors
X-ray detection
X-ray detectors
X-ray imaging
title Physical properties of the superconducting Ta film absorber of an X-ray photon detector
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20properties%20of%20the%20superconducting%20Ta%20film%20absorber%20of%20an%20X-ray%20photon%20detector&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Li,%20L.&rft.date=2003-06-01&rft.volume=13&rft.issue=2&rft.spage=1124&rft.epage=1127&rft.pages=1124-1127&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2003.814171&rft_dat=%3Cproquest_cross%3E28791153%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-f1095a43c06b628d2d362fc7882593684b504193d613daf9b219cdd436604bbd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=922284740&rft_id=info:pmid/&rft_ieee_id=1211804&rfr_iscdi=true