Loading…
Physical properties of the superconducting Ta film absorber of an X-ray photon detector
We have developed single-photon 1-D imaging detectors based on superconducting tunnel junctions. The devices have a Ta film with an Al/AlO/sub x//Al tunnel junction on each end and a Nb contact in the center. The best energy resolution of this kind of detector is 13 eV for 5.9 keV X-ray photons. Two...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2003-06, Vol.13 (2), p.1124-1127 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-f1095a43c06b628d2d362fc7882593684b504193d613daf9b219cdd436604bbd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-f1095a43c06b628d2d362fc7882593684b504193d613daf9b219cdd436604bbd3 |
container_end_page | 1127 |
container_issue | 2 |
container_start_page | 1124 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 13 |
creator | Li, L. Frunzio, L. Wilson, C.M. Prober, D.E. |
description | We have developed single-photon 1-D imaging detectors based on superconducting tunnel junctions. The devices have a Ta film with an Al/AlO/sub x//Al tunnel junction on each end and a Nb contact in the center. The best energy resolution of this kind of detector is 13 eV for 5.9 keV X-ray photons. Two devices with different lengths: 500 and 1000 /spl mu/m are measured to study the nonequilibrium quasiparticle dynamics in the superconducting Ta film. The diffusion constant and lifetime of quasiparticles in the Ta films have been derived by fitting the measured current pulses to the model. The comparison of the simulation and measurement results proves that the quasiparticle loss is not primarily due to the Nb ground contact in the center of the Ta absorber, but is due to the uniform nonthermal loss in the Ta film. The Nb ground contact does contribute to the broadening of the energy width in the center of the Ta film. |
doi_str_mv | 10.1109/TASC.2003.814171 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28791153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1211804</ieee_id><sourcerecordid>28791153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-f1095a43c06b628d2d362fc7882593684b504193d613daf9b219cdd436604bbd3</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhosouK7eBS9B0FvXTD7a9CiLX7Cg4IreQpqkbpdusybtYf-9KV1Y8ORphplnhnfmTZJLwDMAXNwt79_nM4IxnQlgkMNRMgHORUo48OOYYw6pIISeJmchrDEGJhifJJ9vq12otWrQ1rut9V1tA3IV6lYWhT4WtGtNr7u6_UZLhaq62SBVBudL6wdOtegr9WqHtivXuRYZ21ndOX-enFSqCfZiH6fJx-PDcv6cLl6fXub3i1RTgbu0itK5YlTjrMyIMMTQjFQ6F4LwgmaClRwzKKjJgBpVFSWBQhvDaJZhVpaGTpPbcW-U_9Pb0MlNHbRtGtVa1wdJRF4AcPoPkANAQSJ4_Qdcu9638QhZEEIEyxmOEB4h7V0I3lZy6-uN8jsJWA5-yMEPOfghRz_iyM1-rwrx35VXra7DYY5zTnmWR-5q5Gpr7aFNAARm9BeFI5Hy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922284740</pqid></control><display><type>article</type><title>Physical properties of the superconducting Ta film absorber of an X-ray photon detector</title><source>IEEE Xplore (Online service)</source><creator>Li, L. ; Frunzio, L. ; Wilson, C.M. ; Prober, D.E.</creator><creatorcontrib>Li, L. ; Frunzio, L. ; Wilson, C.M. ; Prober, D.E.</creatorcontrib><description>We have developed single-photon 1-D imaging detectors based on superconducting tunnel junctions. The devices have a Ta film with an Al/AlO/sub x//Al tunnel junction on each end and a Nb contact in the center. The best energy resolution of this kind of detector is 13 eV for 5.9 keV X-ray photons. Two devices with different lengths: 500 and 1000 /spl mu/m are measured to study the nonequilibrium quasiparticle dynamics in the superconducting Ta film. The diffusion constant and lifetime of quasiparticles in the Ta films have been derived by fitting the measured current pulses to the model. The comparison of the simulation and measurement results proves that the quasiparticle loss is not primarily due to the Nb ground contact in the center of the Ta absorber, but is due to the uniform nonthermal loss in the Ta film. The Nb ground contact does contribute to the broadening of the energy width in the center of the Ta film.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2003.814171</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electronics ; Energy resolution ; Exact sciences and technology ; High-tc films ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Josephson junctions ; Length measurement ; Microelectronic fabrication (materials and surfaces technology) ; Niobium ; Optical imaging ; Physical properties ; Physics ; Pulse measurements ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Superconducting devices ; Superconducting films ; Superconducting films and low-dimensional structures ; Superconductivity ; X- and γ-ray instruments and techniques ; X- and γ-ray sources, mirrors, gratings and detectors ; X-ray detection ; X-ray detectors ; X-ray imaging</subject><ispartof>IEEE transactions on applied superconductivity, 2003-06, Vol.13 (2), p.1124-1127</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-f1095a43c06b628d2d362fc7882593684b504193d613daf9b219cdd436604bbd3</citedby><cites>FETCH-LOGICAL-c380t-f1095a43c06b628d2d362fc7882593684b504193d613daf9b219cdd436604bbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1211804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15553567$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Frunzio, L.</creatorcontrib><creatorcontrib>Wilson, C.M.</creatorcontrib><creatorcontrib>Prober, D.E.</creatorcontrib><title>Physical properties of the superconducting Ta film absorber of an X-ray photon detector</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We have developed single-photon 1-D imaging detectors based on superconducting tunnel junctions. The devices have a Ta film with an Al/AlO/sub x//Al tunnel junction on each end and a Nb contact in the center. The best energy resolution of this kind of detector is 13 eV for 5.9 keV X-ray photons. Two devices with different lengths: 500 and 1000 /spl mu/m are measured to study the nonequilibrium quasiparticle dynamics in the superconducting Ta film. The diffusion constant and lifetime of quasiparticles in the Ta films have been derived by fitting the measured current pulses to the model. The comparison of the simulation and measurement results proves that the quasiparticle loss is not primarily due to the Nb ground contact in the center of the Ta absorber, but is due to the uniform nonthermal loss in the Ta film. The Nb ground contact does contribute to the broadening of the energy width in the center of the Ta film.</description><subject>Applied sciences</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electronics</subject><subject>Energy resolution</subject><subject>Exact sciences and technology</subject><subject>High-tc films</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Josephson junctions</subject><subject>Length measurement</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Niobium</subject><subject>Optical imaging</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Pulse measurements</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Superconducting devices</subject><subject>Superconducting films</subject><subject>Superconducting films and low-dimensional structures</subject><subject>Superconductivity</subject><subject>X- and γ-ray instruments and techniques</subject><subject>X- and γ-ray sources, mirrors, gratings and detectors</subject><subject>X-ray detection</subject><subject>X-ray detectors</subject><subject>X-ray imaging</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhosouK7eBS9B0FvXTD7a9CiLX7Cg4IreQpqkbpdusybtYf-9KV1Y8ORphplnhnfmTZJLwDMAXNwt79_nM4IxnQlgkMNRMgHORUo48OOYYw6pIISeJmchrDEGJhifJJ9vq12otWrQ1rut9V1tA3IV6lYWhT4WtGtNr7u6_UZLhaq62SBVBudL6wdOtegr9WqHtivXuRYZ21ndOX-enFSqCfZiH6fJx-PDcv6cLl6fXub3i1RTgbu0itK5YlTjrMyIMMTQjFQ6F4LwgmaClRwzKKjJgBpVFSWBQhvDaJZhVpaGTpPbcW-U_9Pb0MlNHbRtGtVa1wdJRF4AcPoPkANAQSJ4_Qdcu9638QhZEEIEyxmOEB4h7V0I3lZy6-uN8jsJWA5-yMEPOfghRz_iyM1-rwrx35VXra7DYY5zTnmWR-5q5Gpr7aFNAARm9BeFI5Hy</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Li, L.</creator><creator>Frunzio, L.</creator><creator>Wilson, C.M.</creator><creator>Prober, D.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20030601</creationdate><title>Physical properties of the superconducting Ta film absorber of an X-ray photon detector</title><author>Li, L. ; Frunzio, L. ; Wilson, C.M. ; Prober, D.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-f1095a43c06b628d2d362fc7882593684b504193d613daf9b219cdd436604bbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electronics</topic><topic>Energy resolution</topic><topic>Exact sciences and technology</topic><topic>High-tc films</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Josephson junctions</topic><topic>Length measurement</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Niobium</topic><topic>Optical imaging</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Pulse measurements</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Superconducting devices</topic><topic>Superconducting films</topic><topic>Superconducting films and low-dimensional structures</topic><topic>Superconductivity</topic><topic>X- and γ-ray instruments and techniques</topic><topic>X- and γ-ray sources, mirrors, gratings and detectors</topic><topic>X-ray detection</topic><topic>X-ray detectors</topic><topic>X-ray imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Frunzio, L.</creatorcontrib><creatorcontrib>Wilson, C.M.</creatorcontrib><creatorcontrib>Prober, D.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, L.</au><au>Frunzio, L.</au><au>Wilson, C.M.</au><au>Prober, D.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical properties of the superconducting Ta film absorber of an X-ray photon detector</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2003-06-01</date><risdate>2003</risdate><volume>13</volume><issue>2</issue><spage>1124</spage><epage>1127</epage><pages>1124-1127</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We have developed single-photon 1-D imaging detectors based on superconducting tunnel junctions. The devices have a Ta film with an Al/AlO/sub x//Al tunnel junction on each end and a Nb contact in the center. The best energy resolution of this kind of detector is 13 eV for 5.9 keV X-ray photons. Two devices with different lengths: 500 and 1000 /spl mu/m are measured to study the nonequilibrium quasiparticle dynamics in the superconducting Ta film. The diffusion constant and lifetime of quasiparticles in the Ta films have been derived by fitting the measured current pulses to the model. The comparison of the simulation and measurement results proves that the quasiparticle loss is not primarily due to the Nb ground contact in the center of the Ta absorber, but is due to the uniform nonthermal loss in the Ta film. The Nb ground contact does contribute to the broadening of the energy width in the center of the Ta film.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2003.814171</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2003-06, Vol.13 (2), p.1124-1127 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_miscellaneous_28791153 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Condensed matter: electronic structure, electrical, magnetic, and optical properties Electronics Energy resolution Exact sciences and technology High-tc films Instruments, apparatus, components and techniques common to several branches of physics and astronomy Josephson junctions Length measurement Microelectronic fabrication (materials and surfaces technology) Niobium Optical imaging Physical properties Physics Pulse measurements Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Superconducting devices Superconducting films Superconducting films and low-dimensional structures Superconductivity X- and γ-ray instruments and techniques X- and γ-ray sources, mirrors, gratings and detectors X-ray detection X-ray detectors X-ray imaging |
title | Physical properties of the superconducting Ta film absorber of an X-ray photon detector |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20properties%20of%20the%20superconducting%20Ta%20film%20absorber%20of%20an%20X-ray%20photon%20detector&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Li,%20L.&rft.date=2003-06-01&rft.volume=13&rft.issue=2&rft.spage=1124&rft.epage=1127&rft.pages=1124-1127&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2003.814171&rft_dat=%3Cproquest_cross%3E28791153%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-f1095a43c06b628d2d362fc7882593684b504193d613daf9b219cdd436604bbd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=922284740&rft_id=info:pmid/&rft_ieee_id=1211804&rfr_iscdi=true |