Loading…

The Impact of Chronic Disease on the Corrected QT (QTc) Value in Women in a British Columbia First Nations Population

Indigenous women have higher rates of chronic disease than Indigenous men and non-Indigenous women. Long QT syndrome (LQTS) can be inherited or acquired; the latter may occur with chronic disease. A prolonged corrected QT value (QTc) is an independent risk factor for ventricular arrhythmias and sudd...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of cardiology 2024-01, Vol.40 (1), p.89-97
Main Authors: Marchand, Miles, Erickson, Anders C, Gillman, Lawrence, Haywood, Rachel, Morrison, Julie, Jaworsky, Denise, Drouin, Olivier, Laksman, Zachary, Krahn, Andrew D, Arbour, Laura
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Indigenous women have higher rates of chronic disease than Indigenous men and non-Indigenous women. Long QT syndrome (LQTS) can be inherited or acquired; the latter may occur with chronic disease. A prolonged corrected QT value (QTc) is an independent risk factor for ventricular arrhythmias and sudden death, but few studies have quantified the impact of chronic disease on the QTc. We assessed the association between chronic disease and QTc prolongation in a population of First Nations women previously ascertained to study a high rate of inherited LQTS due to a unique genetic (founder) variant in their community. This substudy focusing on women expands on the original research where patients with clinical features of LQTS and their relatives were assessed for genetic variants discovered to affect the QTc. Medical records were retrospectively reviewed and chronic diseases documented. Using multivariate linear regression, adjusting for the effect of genetic variants, age, and QTc-prolonging medications, we evaluated the association between chronic disease and the QTc. In total, 275 women were included. After adjustments, a prolonged QTc was associated with coronary artery disease (26.5 ms, 95% confidence interval [CI] 9.0-44.1 ms; P = 0.003), conduction system disease (26.8 ms, 95% CI 2.2-51.4 ms; P = 0.033), rheumatoid arthritis (28.9 ms, 95% CI 12.7-45.1 ms; P = 0.001), and type 2 diabetes mellitus (17.9 ms, 95% CI 3.6-32.3 ms; P = 0.015). This quantification of the association between chronic disease and QTc prolongation in an Indigenous cohort provides insight into the nongenetic determinants of QTc prolongation. Corroboration in other populations will provide evidence for generalisability of these results.
ISSN:0828-282X
1916-7075
DOI:10.1016/j.cjca.2023.10.007