Loading…

Ammonia Cracking Catalyzed by Ni Nanoparticles Confined in the Framework of CeO2 Support

For the extraction of hydrogen from ammonia at low temperatures, we investigated Ni-based catalysts fabricated by the thermal decomposition of RNi5 intermetallics (R = Ce or Y). The interconnected microstructure formed via phase separation between the Ni catalyst and the resulting oxide support was...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2023-10, Vol.14 (42), p.9516-9520
Main Authors: Mizoguchi, Hiroshi, Osawa, Yuta, Sasase, Masato, Ohashi, Naoki, Kitano, Masaaki, Hosono, Hideo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9520
container_issue 42
container_start_page 9516
container_title The journal of physical chemistry letters
container_volume 14
creator Mizoguchi, Hiroshi
Osawa, Yuta
Sasase, Masato
Ohashi, Naoki
Kitano, Masaaki
Hosono, Hideo
description For the extraction of hydrogen from ammonia at low temperatures, we investigated Ni-based catalysts fabricated by the thermal decomposition of RNi5 intermetallics (R = Ce or Y). The interconnected microstructure formed via phase separation between the Ni catalyst and the resulting oxide support was observed to evolve via low-temperature thermal decomposition of RNi5. The resulting Ni/CeO2 nanocomposite exhibited superior catalytic activity of ∼25% at 400 °C for NH3 cracking. The high catalytic activity was attributed to the interlocking of Ni nanoparticles with the CeO2 framework. The growth of Ni nanoparticles was prevented by this interconnected microstructure, in which the Ni nanoparticles incorporated nitrogen owing to the size effect, whereas Ni does not commonly form nitrides. To the best of our knowledge, this is a unique example of a microstructure that enhances catalytic NH3 cracking.
doi_str_mv 10.1021/acs.jpclett.3c02446
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2879407382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879407382</sourcerecordid><originalsourceid>FETCH-LOGICAL-a228t-4b8d999528937d03f7d70e8805ddaebe1df1d506953167df884bb3fd2a5c7fad3</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhC0EEqXwC1g8sqT1R1I7YxVRQKraAZDYLCe2wW1iB9sRKr-eQDsw3at7T6fTA8AtRjOMCJ7LJs52fdPqlGa0QSTPF2dggsucZwzz4vzffQmuYtwhtCgRZxPwtuw676yEVZDN3rp3WMkk28O3VrA-wI2FG-l8L0OyY32ElXfGuvFpHUwfGq6C7PSXD3voDaz0lsDnoe99SNfgwsg26puTTsHr6v6leszW24enarnOJCE8ZXnNVVmWBeElZQpRwxRDmnNUKCV1rbEyWBXj2oLiBVOG87yuqVFEFg0zUtEpuDv29sF_Djom0dnY6LaVTvshCsJZmSNGORmj82N0xCV2fghuHCYwEr8MxZ95ZChODOkPx3ZoQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879407382</pqid></control><display><type>article</type><title>Ammonia Cracking Catalyzed by Ni Nanoparticles Confined in the Framework of CeO2 Support</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Mizoguchi, Hiroshi ; Osawa, Yuta ; Sasase, Masato ; Ohashi, Naoki ; Kitano, Masaaki ; Hosono, Hideo</creator><creatorcontrib>Mizoguchi, Hiroshi ; Osawa, Yuta ; Sasase, Masato ; Ohashi, Naoki ; Kitano, Masaaki ; Hosono, Hideo</creatorcontrib><description>For the extraction of hydrogen from ammonia at low temperatures, we investigated Ni-based catalysts fabricated by the thermal decomposition of RNi5 intermetallics (R = Ce or Y). The interconnected microstructure formed via phase separation between the Ni catalyst and the resulting oxide support was observed to evolve via low-temperature thermal decomposition of RNi5. The resulting Ni/CeO2 nanocomposite exhibited superior catalytic activity of ∼25% at 400 °C for NH3 cracking. The high catalytic activity was attributed to the interlocking of Ni nanoparticles with the CeO2 framework. The growth of Ni nanoparticles was prevented by this interconnected microstructure, in which the Ni nanoparticles incorporated nitrogen owing to the size effect, whereas Ni does not commonly form nitrides. To the best of our knowledge, this is a unique example of a microstructure that enhances catalytic NH3 cracking.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c02446</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><ispartof>The journal of physical chemistry letters, 2023-10, Vol.14 (42), p.9516-9520</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0992-7449 ; 0000-0001-9260-6728 ; 0000-0002-4011-0031 ; 0000-0003-4466-7387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mizoguchi, Hiroshi</creatorcontrib><creatorcontrib>Osawa, Yuta</creatorcontrib><creatorcontrib>Sasase, Masato</creatorcontrib><creatorcontrib>Ohashi, Naoki</creatorcontrib><creatorcontrib>Kitano, Masaaki</creatorcontrib><creatorcontrib>Hosono, Hideo</creatorcontrib><title>Ammonia Cracking Catalyzed by Ni Nanoparticles Confined in the Framework of CeO2 Support</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>For the extraction of hydrogen from ammonia at low temperatures, we investigated Ni-based catalysts fabricated by the thermal decomposition of RNi5 intermetallics (R = Ce or Y). The interconnected microstructure formed via phase separation between the Ni catalyst and the resulting oxide support was observed to evolve via low-temperature thermal decomposition of RNi5. The resulting Ni/CeO2 nanocomposite exhibited superior catalytic activity of ∼25% at 400 °C for NH3 cracking. The high catalytic activity was attributed to the interlocking of Ni nanoparticles with the CeO2 framework. The growth of Ni nanoparticles was prevented by this interconnected microstructure, in which the Ni nanoparticles incorporated nitrogen owing to the size effect, whereas Ni does not commonly form nitrides. To the best of our knowledge, this is a unique example of a microstructure that enhances catalytic NH3 cracking.</description><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAYhC0EEqXwC1g8sqT1R1I7YxVRQKraAZDYLCe2wW1iB9sRKr-eQDsw3at7T6fTA8AtRjOMCJ7LJs52fdPqlGa0QSTPF2dggsucZwzz4vzffQmuYtwhtCgRZxPwtuw676yEVZDN3rp3WMkk28O3VrA-wI2FG-l8L0OyY32ElXfGuvFpHUwfGq6C7PSXD3voDaz0lsDnoe99SNfgwsg26puTTsHr6v6leszW24enarnOJCE8ZXnNVVmWBeElZQpRwxRDmnNUKCV1rbEyWBXj2oLiBVOG87yuqVFEFg0zUtEpuDv29sF_Djom0dnY6LaVTvshCsJZmSNGORmj82N0xCV2fghuHCYwEr8MxZ95ZChODOkPx3ZoQg</recordid><startdate>20231026</startdate><enddate>20231026</enddate><creator>Mizoguchi, Hiroshi</creator><creator>Osawa, Yuta</creator><creator>Sasase, Masato</creator><creator>Ohashi, Naoki</creator><creator>Kitano, Masaaki</creator><creator>Hosono, Hideo</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0992-7449</orcidid><orcidid>https://orcid.org/0000-0001-9260-6728</orcidid><orcidid>https://orcid.org/0000-0002-4011-0031</orcidid><orcidid>https://orcid.org/0000-0003-4466-7387</orcidid></search><sort><creationdate>20231026</creationdate><title>Ammonia Cracking Catalyzed by Ni Nanoparticles Confined in the Framework of CeO2 Support</title><author>Mizoguchi, Hiroshi ; Osawa, Yuta ; Sasase, Masato ; Ohashi, Naoki ; Kitano, Masaaki ; Hosono, Hideo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a228t-4b8d999528937d03f7d70e8805ddaebe1df1d506953167df884bb3fd2a5c7fad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Physical Insights into Chemistry, Catalysis, and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mizoguchi, Hiroshi</creatorcontrib><creatorcontrib>Osawa, Yuta</creatorcontrib><creatorcontrib>Sasase, Masato</creatorcontrib><creatorcontrib>Ohashi, Naoki</creatorcontrib><creatorcontrib>Kitano, Masaaki</creatorcontrib><creatorcontrib>Hosono, Hideo</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mizoguchi, Hiroshi</au><au>Osawa, Yuta</au><au>Sasase, Masato</au><au>Ohashi, Naoki</au><au>Kitano, Masaaki</au><au>Hosono, Hideo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ammonia Cracking Catalyzed by Ni Nanoparticles Confined in the Framework of CeO2 Support</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2023-10-26</date><risdate>2023</risdate><volume>14</volume><issue>42</issue><spage>9516</spage><epage>9520</epage><pages>9516-9520</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>For the extraction of hydrogen from ammonia at low temperatures, we investigated Ni-based catalysts fabricated by the thermal decomposition of RNi5 intermetallics (R = Ce or Y). The interconnected microstructure formed via phase separation between the Ni catalyst and the resulting oxide support was observed to evolve via low-temperature thermal decomposition of RNi5. The resulting Ni/CeO2 nanocomposite exhibited superior catalytic activity of ∼25% at 400 °C for NH3 cracking. The high catalytic activity was attributed to the interlocking of Ni nanoparticles with the CeO2 framework. The growth of Ni nanoparticles was prevented by this interconnected microstructure, in which the Ni nanoparticles incorporated nitrogen owing to the size effect, whereas Ni does not commonly form nitrides. To the best of our knowledge, this is a unique example of a microstructure that enhances catalytic NH3 cracking.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.3c02446</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0992-7449</orcidid><orcidid>https://orcid.org/0000-0001-9260-6728</orcidid><orcidid>https://orcid.org/0000-0002-4011-0031</orcidid><orcidid>https://orcid.org/0000-0003-4466-7387</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2023-10, Vol.14 (42), p.9516-9520
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2879407382
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Physical Insights into Chemistry, Catalysis, and Interfaces
title Ammonia Cracking Catalyzed by Ni Nanoparticles Confined in the Framework of CeO2 Support
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ammonia%20Cracking%20Catalyzed%20by%20Ni%20Nanoparticles%20Confined%20in%20the%20Framework%20of%20CeO2%20Support&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Mizoguchi,%20Hiroshi&rft.date=2023-10-26&rft.volume=14&rft.issue=42&rft.spage=9516&rft.epage=9520&rft.pages=9516-9520&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c02446&rft_dat=%3Cproquest_acs_j%3E2879407382%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a228t-4b8d999528937d03f7d70e8805ddaebe1df1d506953167df884bb3fd2a5c7fad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2879407382&rft_id=info:pmid/&rfr_iscdi=true