Loading…

Negative transconductance in monocrystalline (Al,Ga)As/NiAl/(Al,Ga)As semiconductor/metal/semiconductor tunneling transistors

The authors present the three-terminal transport characteristics of a resonant-tunneling semiconductor-metal-semiconductor (SMS) structure. The buried metal quantum well consists of a 3-nm-thick NiAl layer, epitaxially integrated in (Al,Ga)As, and is contacted by selectively removing the semiconduct...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 1989-11, Vol.36 (11), p.2620-2621
Main Authors: Tabatabaie, N., Sands, T., Harbison, J.P., Gilchrist, H.L., Cheeks, T.L., Florez, L.T., Keramidas, V.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1449-796d78c49cf2c0c066c149899b627335030985671e2edc68d5637f7a26e941ec3
container_end_page 2621
container_issue 11
container_start_page 2620
container_title IEEE transactions on electron devices
container_volume 36
creator Tabatabaie, N.
Sands, T.
Harbison, J.P.
Gilchrist, H.L.
Cheeks, T.L.
Florez, L.T.
Keramidas, V.G.
description The authors present the three-terminal transport characteristics of a resonant-tunneling semiconductor-metal-semiconductor (SMS) structure. The buried metal quantum well consists of a 3-nm-thick NiAl layer, epitaxially integrated in (Al,Ga)As, and is contacted by selectively removing the semiconductor overgrowth. The undoped AlAs tunneling barriers are 2 nm thick and are set back by 5 nm of undoped GaAs from the doped GaAs electrodes. The GaAs doping densities were adjusted to allow for the fabrication of emitter-up, collector-up, and symmetric transistors. The metal-semiconductor Schottky contacts between the NiAl and the cladding (Al,Ga)As layers were studied in order to characterize the individual interfaces and also to confirm the independence of the ultrathin buried metal electrode. Transistor action has been observed at room temperature in emitter-up structures with a wide (70 nm) undoped GaAs collector spacer. Room-temperature negative transconductance values as high as 1.4 mS/mm/sup 2/ have been obtained for large-area (80- mu m diameter) devices.
doi_str_mv 10.1109/16.43740
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28800848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>43740</ieee_id><sourcerecordid>28959799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1449-796d78c49cf2c0c066c149899b627335030985671e2edc68d5637f7a26e941ec3</originalsourceid><addsrcrecordid>eNqNkc1Lw0AQxRdRsFbBq7ecpIJpdrOb_TiGolUo9aLnsG4mZSXZ1N1E6MH_3WhKwVtPw3vzezOHh9A1wXNCsEoInzMqGD5BE5JlIlac8VM0wZjIWFFJz9FFCB-D5IylE_S9ho3u7BdEndcumNaVvem0MxBZFzWta43fhU7XtXUQzfL6fqnv8pCsbV4nBxkFaOw-2_qkgSGQ_POirncOhiOb8ZENgxku0Vml6wBX-zlFb48Pr4unePWyfF7kq9gQxlQsFC-FNEyZKjXYYM4HX0ml3nkqKM0wxUpmXBBIoTRclhmnohI65aAYAUOn6Ha8u_XtZw-hKxobDNS1dtD2oUilypRQ6ghQYiyZPAJklBKZDuBsBI1vQ_BQFVtvG-13BcHFb2MF4cVfYwN6M6IWAA7YuPsBIDKQvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28433182</pqid></control><display><type>article</type><title>Negative transconductance in monocrystalline (Al,Ga)As/NiAl/(Al,Ga)As semiconductor/metal/semiconductor tunneling transistors</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tabatabaie, N. ; Sands, T. ; Harbison, J.P. ; Gilchrist, H.L. ; Cheeks, T.L. ; Florez, L.T. ; Keramidas, V.G.</creator><creatorcontrib>Tabatabaie, N. ; Sands, T. ; Harbison, J.P. ; Gilchrist, H.L. ; Cheeks, T.L. ; Florez, L.T. ; Keramidas, V.G.</creatorcontrib><description>The authors present the three-terminal transport characteristics of a resonant-tunneling semiconductor-metal-semiconductor (SMS) structure. The buried metal quantum well consists of a 3-nm-thick NiAl layer, epitaxially integrated in (Al,Ga)As, and is contacted by selectively removing the semiconductor overgrowth. The undoped AlAs tunneling barriers are 2 nm thick and are set back by 5 nm of undoped GaAs from the doped GaAs electrodes. The GaAs doping densities were adjusted to allow for the fabrication of emitter-up, collector-up, and symmetric transistors. The metal-semiconductor Schottky contacts between the NiAl and the cladding (Al,Ga)As layers were studied in order to characterize the individual interfaces and also to confirm the independence of the ultrathin buried metal electrode. Transistor action has been observed at room temperature in emitter-up structures with a wide (70 nm) undoped GaAs collector spacer. Room-temperature negative transconductance values as high as 1.4 mS/mm/sup 2/ have been obtained for large-area (80- mu m diameter) devices.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.43740</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electrodes ; Fabrication ; Gallium arsenide ; Resonant tunneling devices ; Schottky barriers ; Semiconductor device doping ; Temperature ; Transconductance</subject><ispartof>IEEE transactions on electron devices, 1989-11, Vol.36 (11), p.2620-2621</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1449-796d78c49cf2c0c066c149899b627335030985671e2edc68d5637f7a26e941ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/43740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Tabatabaie, N.</creatorcontrib><creatorcontrib>Sands, T.</creatorcontrib><creatorcontrib>Harbison, J.P.</creatorcontrib><creatorcontrib>Gilchrist, H.L.</creatorcontrib><creatorcontrib>Cheeks, T.L.</creatorcontrib><creatorcontrib>Florez, L.T.</creatorcontrib><creatorcontrib>Keramidas, V.G.</creatorcontrib><title>Negative transconductance in monocrystalline (Al,Ga)As/NiAl/(Al,Ga)As semiconductor/metal/semiconductor tunneling transistors</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The authors present the three-terminal transport characteristics of a resonant-tunneling semiconductor-metal-semiconductor (SMS) structure. The buried metal quantum well consists of a 3-nm-thick NiAl layer, epitaxially integrated in (Al,Ga)As, and is contacted by selectively removing the semiconductor overgrowth. The undoped AlAs tunneling barriers are 2 nm thick and are set back by 5 nm of undoped GaAs from the doped GaAs electrodes. The GaAs doping densities were adjusted to allow for the fabrication of emitter-up, collector-up, and symmetric transistors. The metal-semiconductor Schottky contacts between the NiAl and the cladding (Al,Ga)As layers were studied in order to characterize the individual interfaces and also to confirm the independence of the ultrathin buried metal electrode. Transistor action has been observed at room temperature in emitter-up structures with a wide (70 nm) undoped GaAs collector spacer. Room-temperature negative transconductance values as high as 1.4 mS/mm/sup 2/ have been obtained for large-area (80- mu m diameter) devices.</description><subject>Electrodes</subject><subject>Fabrication</subject><subject>Gallium arsenide</subject><subject>Resonant tunneling devices</subject><subject>Schottky barriers</subject><subject>Semiconductor device doping</subject><subject>Temperature</subject><subject>Transconductance</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqNkc1Lw0AQxRdRsFbBq7ecpIJpdrOb_TiGolUo9aLnsG4mZSXZ1N1E6MH_3WhKwVtPw3vzezOHh9A1wXNCsEoInzMqGD5BE5JlIlac8VM0wZjIWFFJz9FFCB-D5IylE_S9ho3u7BdEndcumNaVvem0MxBZFzWta43fhU7XtXUQzfL6fqnv8pCsbV4nBxkFaOw-2_qkgSGQ_POirncOhiOb8ZENgxku0Vml6wBX-zlFb48Pr4unePWyfF7kq9gQxlQsFC-FNEyZKjXYYM4HX0ml3nkqKM0wxUpmXBBIoTRclhmnohI65aAYAUOn6Ha8u_XtZw-hKxobDNS1dtD2oUilypRQ6ghQYiyZPAJklBKZDuBsBI1vQ_BQFVtvG-13BcHFb2MF4cVfYwN6M6IWAA7YuPsBIDKQvQ</recordid><startdate>198911</startdate><enddate>198911</enddate><creator>Tabatabaie, N.</creator><creator>Sands, T.</creator><creator>Harbison, J.P.</creator><creator>Gilchrist, H.L.</creator><creator>Cheeks, T.L.</creator><creator>Florez, L.T.</creator><creator>Keramidas, V.G.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>8BQ</scope><scope>JG9</scope><scope>7U5</scope></search><sort><creationdate>198911</creationdate><title>Negative transconductance in monocrystalline (Al,Ga)As/NiAl/(Al,Ga)As semiconductor/metal/semiconductor tunneling transistors</title><author>Tabatabaie, N. ; Sands, T. ; Harbison, J.P. ; Gilchrist, H.L. ; Cheeks, T.L. ; Florez, L.T. ; Keramidas, V.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1449-796d78c49cf2c0c066c149899b627335030985671e2edc68d5637f7a26e941ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Electrodes</topic><topic>Fabrication</topic><topic>Gallium arsenide</topic><topic>Resonant tunneling devices</topic><topic>Schottky barriers</topic><topic>Semiconductor device doping</topic><topic>Temperature</topic><topic>Transconductance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabatabaie, N.</creatorcontrib><creatorcontrib>Sands, T.</creatorcontrib><creatorcontrib>Harbison, J.P.</creatorcontrib><creatorcontrib>Gilchrist, H.L.</creatorcontrib><creatorcontrib>Cheeks, T.L.</creatorcontrib><creatorcontrib>Florez, L.T.</creatorcontrib><creatorcontrib>Keramidas, V.G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabatabaie, N.</au><au>Sands, T.</au><au>Harbison, J.P.</au><au>Gilchrist, H.L.</au><au>Cheeks, T.L.</au><au>Florez, L.T.</au><au>Keramidas, V.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negative transconductance in monocrystalline (Al,Ga)As/NiAl/(Al,Ga)As semiconductor/metal/semiconductor tunneling transistors</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>1989-11</date><risdate>1989</risdate><volume>36</volume><issue>11</issue><spage>2620</spage><epage>2621</epage><pages>2620-2621</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The authors present the three-terminal transport characteristics of a resonant-tunneling semiconductor-metal-semiconductor (SMS) structure. The buried metal quantum well consists of a 3-nm-thick NiAl layer, epitaxially integrated in (Al,Ga)As, and is contacted by selectively removing the semiconductor overgrowth. The undoped AlAs tunneling barriers are 2 nm thick and are set back by 5 nm of undoped GaAs from the doped GaAs electrodes. The GaAs doping densities were adjusted to allow for the fabrication of emitter-up, collector-up, and symmetric transistors. The metal-semiconductor Schottky contacts between the NiAl and the cladding (Al,Ga)As layers were studied in order to characterize the individual interfaces and also to confirm the independence of the ultrathin buried metal electrode. Transistor action has been observed at room temperature in emitter-up structures with a wide (70 nm) undoped GaAs collector spacer. Room-temperature negative transconductance values as high as 1.4 mS/mm/sup 2/ have been obtained for large-area (80- mu m diameter) devices.</abstract><pub>IEEE</pub><doi>10.1109/16.43740</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 1989-11, Vol.36 (11), p.2620-2621
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_28800848
source IEEE Electronic Library (IEL) Journals
subjects Electrodes
Fabrication
Gallium arsenide
Resonant tunneling devices
Schottky barriers
Semiconductor device doping
Temperature
Transconductance
title Negative transconductance in monocrystalline (Al,Ga)As/NiAl/(Al,Ga)As semiconductor/metal/semiconductor tunneling transistors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negative%20transconductance%20in%20monocrystalline%20(Al,Ga)As/NiAl/(Al,Ga)As%20semiconductor/metal/semiconductor%20tunneling%20transistors&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Tabatabaie,%20N.&rft.date=1989-11&rft.volume=36&rft.issue=11&rft.spage=2620&rft.epage=2621&rft.pages=2620-2621&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.43740&rft_dat=%3Cproquest_cross%3E28959799%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1449-796d78c49cf2c0c066c149899b627335030985671e2edc68d5637f7a26e941ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28433182&rft_id=info:pmid/&rft_ieee_id=43740&rfr_iscdi=true