Loading…

Achieving Record‐High Stretchability and Mechanical Stability in Organic Photovoltaic Blends with a Dilute‐absorber Strategy

Organic solar cells (OSCs) have potential for applications in wearable electronics. Except for high power conversion efficiency (PCE), excellent tensile properties and mechanical stability are required for achieving high‐performance wearable OSCs, while the present metrics barely meet the stretchabl...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-02, Vol.36 (8), p.e2307278-n/a
Main Authors: Li, Saimeng, Gao, Mengyuan, Zhou, Kangkang, Li, Xin, Xian, Kaihu, Zhao, Wenchao, Chen, Yu, He, Chunyong, Ye, Long
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3738-15bb8eb0196cb8f29a23f3a4e0f81b702f8c37f9ca8cb5fd37e49ff8e7911bba3
cites cdi_FETCH-LOGICAL-c3738-15bb8eb0196cb8f29a23f3a4e0f81b702f8c37f9ca8cb5fd37e49ff8e7911bba3
container_end_page n/a
container_issue 8
container_start_page e2307278
container_title Advanced materials (Weinheim)
container_volume 36
creator Li, Saimeng
Gao, Mengyuan
Zhou, Kangkang
Li, Xin
Xian, Kaihu
Zhao, Wenchao
Chen, Yu
He, Chunyong
Ye, Long
description Organic solar cells (OSCs) have potential for applications in wearable electronics. Except for high power conversion efficiency (PCE), excellent tensile properties and mechanical stability are required for achieving high‐performance wearable OSCs, while the present metrics barely meet the stretchable requirements. Herein, this work proposes a facile and low‐cost strategy for constructing intrinsically stretchable OSCs by introducing a readily accessible polymer elastomer as a diluent for all‐polymer photovoltaic blends. Remarkably, record‐high stretchability with a fracture strain of up to 1000% and mechanical stability with elastic recovery >90% under cyclic tensile tests are realized in the OSCs active layers for the first time. Specifically, the tensile properties of best‐performing all‐polymer photovoltaic blends are increased by up to 250 times after blending. Previously unattainable performance metrics (fracture strain >50% and PCE >10%) are achieved simultaneously for the resulting photovoltaic films. Furthermore, an overall evaluation parameter y is proposed for the efficiency‐cost‐ stretchability balance of photovoltaic blend films. The y value of dilute‐absorber system is two orders of magnitude greater than those of prior state‐of‐the‐art systems. Additionally, intrinsically stretchable devices are prepared to showcase the mechanical stability. Overall, this work offers a new avenue for constructing and comprehensively evaluating intrinsically stretchable organic electronic films. Intrinsically stretchable organic photovoltaic active layers are constructed by introducing a readily available polymer elastomer to best‐performance photovoltaic polymers. Record‐high stretchability with fracture strain up to 1000% and elastic recovery over 90% under cyclic tensile tests are realized for the first time. Specifically, previously unattainable performance metrics (fracture strain >50%, photovoltaic efficiency>10%) are simultaneously achieved in the resulting photovoltaic films.
doi_str_mv 10.1002/adma.202307278
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2880095877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929883825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-15bb8eb0196cb8f29a23f3a4e0f81b702f8c37f9ca8cb5fd37e49ff8e7911bba3</originalsourceid><addsrcrecordid>eNqFkb9OHDEQh60oUbiQtCkjS2lo9uI_t2u7vEACSCCiQOqV7R3fGu2tie0FXccj5Bl5Enw6IFKaVNZ4vvk0mh9CHymZU0LYF92t9ZwRxolgQr5CM1ozWi2Iql-jGVG8rlSzkHvoXUrXhBDVkOYt2uNCNrUUbIbul7b3cOvHFf4JNsTu4f7PiV_1-DJHyLbXxg8-b7AeO3wOpR691UPpPjf8iC_iavuNf_Qhh9swZF2KrwOMXcJ3PvdY4yM_TBmKW5sUooG49esMq8179MbpIcGHp3cf_fr-7erwpDq7OD49XJ5VlgsuK1obI8EQqhprpGNKM-64XgBxkhpBmJMFdMpqaU3tOi5goZyTIBSlxmi-jw523psYfk-Qcrv2ycIw6BHClFomZTlPOYoo6Od_0OswxbFs1zLFlJRcsrpQ8x1lY0gpgmtvol_ruGkpabfZtNts2pdsysCnJ-1k1tC94M9hFEDtgDs_wOY_unZ5dL78K38EXFifEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929883825</pqid></control><display><type>article</type><title>Achieving Record‐High Stretchability and Mechanical Stability in Organic Photovoltaic Blends with a Dilute‐absorber Strategy</title><source>Wiley</source><creator>Li, Saimeng ; Gao, Mengyuan ; Zhou, Kangkang ; Li, Xin ; Xian, Kaihu ; Zhao, Wenchao ; Chen, Yu ; He, Chunyong ; Ye, Long</creator><creatorcontrib>Li, Saimeng ; Gao, Mengyuan ; Zhou, Kangkang ; Li, Xin ; Xian, Kaihu ; Zhao, Wenchao ; Chen, Yu ; He, Chunyong ; Ye, Long</creatorcontrib><description>Organic solar cells (OSCs) have potential for applications in wearable electronics. Except for high power conversion efficiency (PCE), excellent tensile properties and mechanical stability are required for achieving high‐performance wearable OSCs, while the present metrics barely meet the stretchable requirements. Herein, this work proposes a facile and low‐cost strategy for constructing intrinsically stretchable OSCs by introducing a readily accessible polymer elastomer as a diluent for all‐polymer photovoltaic blends. Remarkably, record‐high stretchability with a fracture strain of up to 1000% and mechanical stability with elastic recovery &gt;90% under cyclic tensile tests are realized in the OSCs active layers for the first time. Specifically, the tensile properties of best‐performing all‐polymer photovoltaic blends are increased by up to 250 times after blending. Previously unattainable performance metrics (fracture strain &gt;50% and PCE &gt;10%) are achieved simultaneously for the resulting photovoltaic films. Furthermore, an overall evaluation parameter y is proposed for the efficiency‐cost‐ stretchability balance of photovoltaic blend films. The y value of dilute‐absorber system is two orders of magnitude greater than those of prior state‐of‐the‐art systems. Additionally, intrinsically stretchable devices are prepared to showcase the mechanical stability. Overall, this work offers a new avenue for constructing and comprehensively evaluating intrinsically stretchable organic electronic films. Intrinsically stretchable organic photovoltaic active layers are constructed by introducing a readily available polymer elastomer to best‐performance photovoltaic polymers. Record‐high stretchability with fracture strain up to 1000% and elastic recovery over 90% under cyclic tensile tests are realized for the first time. Specifically, previously unattainable performance metrics (fracture strain &gt;50%, photovoltaic efficiency&gt;10%) are simultaneously achieved in the resulting photovoltaic films.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202307278</identifier><identifier>PMID: 37865872</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorbers ; Dilution ; Elastic recovery ; Elastomers ; Energy conversion efficiency ; film stretchability ; mechanical stability ; organic solar cells ; Performance measurement ; Photovoltaic cells ; Polymer blends ; polymer elastomer ; Polymers ; Solar cells ; Stability ; Strain ; Stretchability ; stretchable solar cells ; Tensile properties ; Tensile tests ; Wearable technology</subject><ispartof>Advanced materials (Weinheim), 2024-02, Vol.36 (8), p.e2307278-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-15bb8eb0196cb8f29a23f3a4e0f81b702f8c37f9ca8cb5fd37e49ff8e7911bba3</citedby><cites>FETCH-LOGICAL-c3738-15bb8eb0196cb8f29a23f3a4e0f81b702f8c37f9ca8cb5fd37e49ff8e7911bba3</cites><orcidid>0009-0008-7359-8177 ; 0000-0002-5884-0083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37865872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Saimeng</creatorcontrib><creatorcontrib>Gao, Mengyuan</creatorcontrib><creatorcontrib>Zhou, Kangkang</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Xian, Kaihu</creatorcontrib><creatorcontrib>Zhao, Wenchao</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>He, Chunyong</creatorcontrib><creatorcontrib>Ye, Long</creatorcontrib><title>Achieving Record‐High Stretchability and Mechanical Stability in Organic Photovoltaic Blends with a Dilute‐absorber Strategy</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Organic solar cells (OSCs) have potential for applications in wearable electronics. Except for high power conversion efficiency (PCE), excellent tensile properties and mechanical stability are required for achieving high‐performance wearable OSCs, while the present metrics barely meet the stretchable requirements. Herein, this work proposes a facile and low‐cost strategy for constructing intrinsically stretchable OSCs by introducing a readily accessible polymer elastomer as a diluent for all‐polymer photovoltaic blends. Remarkably, record‐high stretchability with a fracture strain of up to 1000% and mechanical stability with elastic recovery &gt;90% under cyclic tensile tests are realized in the OSCs active layers for the first time. Specifically, the tensile properties of best‐performing all‐polymer photovoltaic blends are increased by up to 250 times after blending. Previously unattainable performance metrics (fracture strain &gt;50% and PCE &gt;10%) are achieved simultaneously for the resulting photovoltaic films. Furthermore, an overall evaluation parameter y is proposed for the efficiency‐cost‐ stretchability balance of photovoltaic blend films. The y value of dilute‐absorber system is two orders of magnitude greater than those of prior state‐of‐the‐art systems. Additionally, intrinsically stretchable devices are prepared to showcase the mechanical stability. Overall, this work offers a new avenue for constructing and comprehensively evaluating intrinsically stretchable organic electronic films. Intrinsically stretchable organic photovoltaic active layers are constructed by introducing a readily available polymer elastomer to best‐performance photovoltaic polymers. Record‐high stretchability with fracture strain up to 1000% and elastic recovery over 90% under cyclic tensile tests are realized for the first time. Specifically, previously unattainable performance metrics (fracture strain &gt;50%, photovoltaic efficiency&gt;10%) are simultaneously achieved in the resulting photovoltaic films.</description><subject>Absorbers</subject><subject>Dilution</subject><subject>Elastic recovery</subject><subject>Elastomers</subject><subject>Energy conversion efficiency</subject><subject>film stretchability</subject><subject>mechanical stability</subject><subject>organic solar cells</subject><subject>Performance measurement</subject><subject>Photovoltaic cells</subject><subject>Polymer blends</subject><subject>polymer elastomer</subject><subject>Polymers</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Strain</subject><subject>Stretchability</subject><subject>stretchable solar cells</subject><subject>Tensile properties</subject><subject>Tensile tests</subject><subject>Wearable technology</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkb9OHDEQh60oUbiQtCkjS2lo9uI_t2u7vEACSCCiQOqV7R3fGu2tie0FXccj5Bl5Enw6IFKaVNZ4vvk0mh9CHymZU0LYF92t9ZwRxolgQr5CM1ozWi2Iql-jGVG8rlSzkHvoXUrXhBDVkOYt2uNCNrUUbIbul7b3cOvHFf4JNsTu4f7PiV_1-DJHyLbXxg8-b7AeO3wOpR691UPpPjf8iC_iavuNf_Qhh9swZF2KrwOMXcJ3PvdY4yM_TBmKW5sUooG49esMq8179MbpIcGHp3cf_fr-7erwpDq7OD49XJ5VlgsuK1obI8EQqhprpGNKM-64XgBxkhpBmJMFdMpqaU3tOi5goZyTIBSlxmi-jw523psYfk-Qcrv2ycIw6BHClFomZTlPOYoo6Od_0OswxbFs1zLFlJRcsrpQ8x1lY0gpgmtvol_ruGkpabfZtNts2pdsysCnJ-1k1tC94M9hFEDtgDs_wOY_unZ5dL78K38EXFifEA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Li, Saimeng</creator><creator>Gao, Mengyuan</creator><creator>Zhou, Kangkang</creator><creator>Li, Xin</creator><creator>Xian, Kaihu</creator><creator>Zhao, Wenchao</creator><creator>Chen, Yu</creator><creator>He, Chunyong</creator><creator>Ye, Long</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0008-7359-8177</orcidid><orcidid>https://orcid.org/0000-0002-5884-0083</orcidid></search><sort><creationdate>20240201</creationdate><title>Achieving Record‐High Stretchability and Mechanical Stability in Organic Photovoltaic Blends with a Dilute‐absorber Strategy</title><author>Li, Saimeng ; Gao, Mengyuan ; Zhou, Kangkang ; Li, Xin ; Xian, Kaihu ; Zhao, Wenchao ; Chen, Yu ; He, Chunyong ; Ye, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-15bb8eb0196cb8f29a23f3a4e0f81b702f8c37f9ca8cb5fd37e49ff8e7911bba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorbers</topic><topic>Dilution</topic><topic>Elastic recovery</topic><topic>Elastomers</topic><topic>Energy conversion efficiency</topic><topic>film stretchability</topic><topic>mechanical stability</topic><topic>organic solar cells</topic><topic>Performance measurement</topic><topic>Photovoltaic cells</topic><topic>Polymer blends</topic><topic>polymer elastomer</topic><topic>Polymers</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Strain</topic><topic>Stretchability</topic><topic>stretchable solar cells</topic><topic>Tensile properties</topic><topic>Tensile tests</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Saimeng</creatorcontrib><creatorcontrib>Gao, Mengyuan</creatorcontrib><creatorcontrib>Zhou, Kangkang</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Xian, Kaihu</creatorcontrib><creatorcontrib>Zhao, Wenchao</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>He, Chunyong</creatorcontrib><creatorcontrib>Ye, Long</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Saimeng</au><au>Gao, Mengyuan</au><au>Zhou, Kangkang</au><au>Li, Xin</au><au>Xian, Kaihu</au><au>Zhao, Wenchao</au><au>Chen, Yu</au><au>He, Chunyong</au><au>Ye, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving Record‐High Stretchability and Mechanical Stability in Organic Photovoltaic Blends with a Dilute‐absorber Strategy</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>36</volume><issue>8</issue><spage>e2307278</spage><epage>n/a</epage><pages>e2307278-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Organic solar cells (OSCs) have potential for applications in wearable electronics. Except for high power conversion efficiency (PCE), excellent tensile properties and mechanical stability are required for achieving high‐performance wearable OSCs, while the present metrics barely meet the stretchable requirements. Herein, this work proposes a facile and low‐cost strategy for constructing intrinsically stretchable OSCs by introducing a readily accessible polymer elastomer as a diluent for all‐polymer photovoltaic blends. Remarkably, record‐high stretchability with a fracture strain of up to 1000% and mechanical stability with elastic recovery &gt;90% under cyclic tensile tests are realized in the OSCs active layers for the first time. Specifically, the tensile properties of best‐performing all‐polymer photovoltaic blends are increased by up to 250 times after blending. Previously unattainable performance metrics (fracture strain &gt;50% and PCE &gt;10%) are achieved simultaneously for the resulting photovoltaic films. Furthermore, an overall evaluation parameter y is proposed for the efficiency‐cost‐ stretchability balance of photovoltaic blend films. The y value of dilute‐absorber system is two orders of magnitude greater than those of prior state‐of‐the‐art systems. Additionally, intrinsically stretchable devices are prepared to showcase the mechanical stability. Overall, this work offers a new avenue for constructing and comprehensively evaluating intrinsically stretchable organic electronic films. Intrinsically stretchable organic photovoltaic active layers are constructed by introducing a readily available polymer elastomer to best‐performance photovoltaic polymers. Record‐high stretchability with fracture strain up to 1000% and elastic recovery over 90% under cyclic tensile tests are realized for the first time. Specifically, previously unattainable performance metrics (fracture strain &gt;50%, photovoltaic efficiency&gt;10%) are simultaneously achieved in the resulting photovoltaic films.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37865872</pmid><doi>10.1002/adma.202307278</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0008-7359-8177</orcidid><orcidid>https://orcid.org/0000-0002-5884-0083</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-02, Vol.36 (8), p.e2307278-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2880095877
source Wiley
subjects Absorbers
Dilution
Elastic recovery
Elastomers
Energy conversion efficiency
film stretchability
mechanical stability
organic solar cells
Performance measurement
Photovoltaic cells
Polymer blends
polymer elastomer
Polymers
Solar cells
Stability
Strain
Stretchability
stretchable solar cells
Tensile properties
Tensile tests
Wearable technology
title Achieving Record‐High Stretchability and Mechanical Stability in Organic Photovoltaic Blends with a Dilute‐absorber Strategy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20Record%E2%80%90High%20Stretchability%20and%20Mechanical%20Stability%20in%20Organic%20Photovoltaic%20Blends%20with%20a%20Dilute%E2%80%90absorber%20Strategy&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Saimeng&rft.date=2024-02-01&rft.volume=36&rft.issue=8&rft.spage=e2307278&rft.epage=n/a&rft.pages=e2307278-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202307278&rft_dat=%3Cproquest_cross%3E2929883825%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3738-15bb8eb0196cb8f29a23f3a4e0f81b702f8c37f9ca8cb5fd37e49ff8e7911bba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2929883825&rft_id=info:pmid/37865872&rfr_iscdi=true