Loading…

Molecular mechanism of different flower color formation of Cymbidium ensifolium

Cymbidium ensifolium is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of C. ensifolium , this research conducted transcriptome and metabolome analyses on four different colored sep...

Full description

Saved in:
Bibliographic Details
Published in:Plant molecular biology 2023-11, Vol.113 (4-5), p.193-204
Main Authors: Ai, Ye, Zheng, Qing-Dong, Wang, Meng-Jie, Xiong, Long-Wei, Li, Peng, Guo, Li-Ting, Wang, Meng-Yao, Peng, Dong-Hui, Lan, Si-Ren, Liu, Zhong-Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-76027a14c170ac46409de11d5298ac6e81774efa219ad23767ae33c2502fed2e3
cites cdi_FETCH-LOGICAL-c414t-76027a14c170ac46409de11d5298ac6e81774efa219ad23767ae33c2502fed2e3
container_end_page 204
container_issue 4-5
container_start_page 193
container_title Plant molecular biology
container_volume 113
creator Ai, Ye
Zheng, Qing-Dong
Wang, Meng-Jie
Xiong, Long-Wei
Li, Peng
Guo, Li-Ting
Wang, Meng-Yao
Peng, Dong-Hui
Lan, Si-Ren
Liu, Zhong-Jian
description Cymbidium ensifolium is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of C. ensifolium , this research conducted transcriptome and metabolome analyses on four different colored sepals of C. ensifolium . Metabolome analysis detected 204 flavonoid metabolites, including 17 polyphenols, 27 anthocyanins, 75 flavones, 34 flavonols, 25 flavonoids, 18 flavanones, and 8 isoflavones. Among them, purple-red and red sepals contain a lot of anthocyanins, including cyanidin, pelargonin, and paeoniflorin, while yellow-green and white sepals have less anthocyanins detected, and their metabolites are mainly flavonols, flavanones and flavonoids. Transcriptome sequencing analysis showed that the expression levels of the anthocyanin biosynthetic enzyme genes in red and purple-red sepals were significantly higher than those in white and yellow-green sepals of C. ensifolium . The experimental results showed that CeF3′H2 , CeDFR , CeANS , CeF3H and CeUFGT1 may be the key genes involved in anthocyanin production in C. ensifolium sepals, and CeMYB104 has been proved to play an important role in the flower color formation of C. ensifolium . The results of transformation showed that the CeMYB104 is involved in the synthesis of anthocyanins and can form a purple-red color in the white perianth of Phalaenopsis . These findings provide a theoretical reference to understand the formation mechanism of flower color in C. ensifolium . Key message This study identified the differential metabolites and differential genes among different color sepals, determined the key regulatory genes, and constructed a regulatory network for the flower color formation of Cymbidium ensifolium .
doi_str_mv 10.1007/s11103-023-01382-0
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2881710040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A776377785</galeid><sourcerecordid>A776377785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-76027a14c170ac46409de11d5298ac6e81774efa219ad23767ae33c2502fed2e3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMo9rb6B1zIgBs3U_M1ObnLcvGjUOlG1yHNnNSUfNRkBum_N9epCi4khByS5z28Jy8hrxg9Z5TCu8YYo2KkvG8mNB_pE7JjE4hxolw_JTvKFIxSMn5CTlu7o7TLhHpOTgRo0EzDjlx_LhHdGm0dErpvNoeWhuKHOXiPFfMy-Fh-YB1ciaUOvtRkl1DykTk8pJswhzUNmFvwJfbyBXnmbWz48vE8I18_vP9y-DReXX-8PFxcjU4yuYygKAfLpGNArZNK0v2MjM0T32vrFGoGINFbzvZ25gIUWBTC8T6Yx5mjOCNvt773tXxfsS0mheYwRpuxrM1w3Vv0cSXt6Jt_0Luy1tzdGb7vX6QmLVWnzjfq1kY0IfuyVOv6mjEFVzL60O8vAJQAAD11Ad8ErpbWKnpzX0Oy9cEwao75mC0f0_Mxv_IxRy-vH72sNwnnP5LfgXRAbEDrT_kW61-z_2n7EzyLmaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901665846</pqid></control><display><type>article</type><title>Molecular mechanism of different flower color formation of Cymbidium ensifolium</title><source>Springer Link</source><creator>Ai, Ye ; Zheng, Qing-Dong ; Wang, Meng-Jie ; Xiong, Long-Wei ; Li, Peng ; Guo, Li-Ting ; Wang, Meng-Yao ; Peng, Dong-Hui ; Lan, Si-Ren ; Liu, Zhong-Jian</creator><creatorcontrib>Ai, Ye ; Zheng, Qing-Dong ; Wang, Meng-Jie ; Xiong, Long-Wei ; Li, Peng ; Guo, Li-Ting ; Wang, Meng-Yao ; Peng, Dong-Hui ; Lan, Si-Ren ; Liu, Zhong-Jian</creatorcontrib><description>Cymbidium ensifolium is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of C. ensifolium , this research conducted transcriptome and metabolome analyses on four different colored sepals of C. ensifolium . Metabolome analysis detected 204 flavonoid metabolites, including 17 polyphenols, 27 anthocyanins, 75 flavones, 34 flavonols, 25 flavonoids, 18 flavanones, and 8 isoflavones. Among them, purple-red and red sepals contain a lot of anthocyanins, including cyanidin, pelargonin, and paeoniflorin, while yellow-green and white sepals have less anthocyanins detected, and their metabolites are mainly flavonols, flavanones and flavonoids. Transcriptome sequencing analysis showed that the expression levels of the anthocyanin biosynthetic enzyme genes in red and purple-red sepals were significantly higher than those in white and yellow-green sepals of C. ensifolium . The experimental results showed that CeF3′H2 , CeDFR , CeANS , CeF3H and CeUFGT1 may be the key genes involved in anthocyanin production in C. ensifolium sepals, and CeMYB104 has been proved to play an important role in the flower color formation of C. ensifolium . The results of transformation showed that the CeMYB104 is involved in the synthesis of anthocyanins and can form a purple-red color in the white perianth of Phalaenopsis . These findings provide a theoretical reference to understand the formation mechanism of flower color in C. ensifolium . Key message This study identified the differential metabolites and differential genes among different color sepals, determined the key regulatory genes, and constructed a regulatory network for the flower color formation of Cymbidium ensifolium .</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-023-01382-0</identifier><identifier>PMID: 37878187</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Anthocyanin ; Anthocyanins ; Biochemistry ; Biomedical and Life Sciences ; Color ; Cymbidium ensifolium ; Enzymes ; Flavones ; Flavonoids ; Flavonols ; Flowers ; Isoflavones ; Life Sciences ; Metabolites ; Molecular modelling ; Plant Pathology ; Plant Sciences ; Polyphenols ; Sepals ; Sequence analysis ; Transcriptomes</subject><ispartof>Plant molecular biology, 2023-11, Vol.113 (4-5), p.193-204</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature B.V.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-76027a14c170ac46409de11d5298ac6e81774efa219ad23767ae33c2502fed2e3</citedby><cites>FETCH-LOGICAL-c414t-76027a14c170ac46409de11d5298ac6e81774efa219ad23767ae33c2502fed2e3</cites><orcidid>0000-0003-2793-6768 ; 0000-0003-4390-3878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37878187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ai, Ye</creatorcontrib><creatorcontrib>Zheng, Qing-Dong</creatorcontrib><creatorcontrib>Wang, Meng-Jie</creatorcontrib><creatorcontrib>Xiong, Long-Wei</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Guo, Li-Ting</creatorcontrib><creatorcontrib>Wang, Meng-Yao</creatorcontrib><creatorcontrib>Peng, Dong-Hui</creatorcontrib><creatorcontrib>Lan, Si-Ren</creatorcontrib><creatorcontrib>Liu, Zhong-Jian</creatorcontrib><title>Molecular mechanism of different flower color formation of Cymbidium ensifolium</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><addtitle>Plant Mol Biol</addtitle><description>Cymbidium ensifolium is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of C. ensifolium , this research conducted transcriptome and metabolome analyses on four different colored sepals of C. ensifolium . Metabolome analysis detected 204 flavonoid metabolites, including 17 polyphenols, 27 anthocyanins, 75 flavones, 34 flavonols, 25 flavonoids, 18 flavanones, and 8 isoflavones. Among them, purple-red and red sepals contain a lot of anthocyanins, including cyanidin, pelargonin, and paeoniflorin, while yellow-green and white sepals have less anthocyanins detected, and their metabolites are mainly flavonols, flavanones and flavonoids. Transcriptome sequencing analysis showed that the expression levels of the anthocyanin biosynthetic enzyme genes in red and purple-red sepals were significantly higher than those in white and yellow-green sepals of C. ensifolium . The experimental results showed that CeF3′H2 , CeDFR , CeANS , CeF3H and CeUFGT1 may be the key genes involved in anthocyanin production in C. ensifolium sepals, and CeMYB104 has been proved to play an important role in the flower color formation of C. ensifolium . The results of transformation showed that the CeMYB104 is involved in the synthesis of anthocyanins and can form a purple-red color in the white perianth of Phalaenopsis . These findings provide a theoretical reference to understand the formation mechanism of flower color in C. ensifolium . Key message This study identified the differential metabolites and differential genes among different color sepals, determined the key regulatory genes, and constructed a regulatory network for the flower color formation of Cymbidium ensifolium .</description><subject>Analysis</subject><subject>Anthocyanin</subject><subject>Anthocyanins</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Color</subject><subject>Cymbidium ensifolium</subject><subject>Enzymes</subject><subject>Flavones</subject><subject>Flavonoids</subject><subject>Flavonols</subject><subject>Flowers</subject><subject>Isoflavones</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Molecular modelling</subject><subject>Plant Pathology</subject><subject>Plant Sciences</subject><subject>Polyphenols</subject><subject>Sepals</subject><subject>Sequence analysis</subject><subject>Transcriptomes</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rFTEUhoMo9rb6B1zIgBs3U_M1ObnLcvGjUOlG1yHNnNSUfNRkBum_N9epCi4khByS5z28Jy8hrxg9Z5TCu8YYo2KkvG8mNB_pE7JjE4hxolw_JTvKFIxSMn5CTlu7o7TLhHpOTgRo0EzDjlx_LhHdGm0dErpvNoeWhuKHOXiPFfMy-Fh-YB1ciaUOvtRkl1DykTk8pJswhzUNmFvwJfbyBXnmbWz48vE8I18_vP9y-DReXX-8PFxcjU4yuYygKAfLpGNArZNK0v2MjM0T32vrFGoGINFbzvZ25gIUWBTC8T6Yx5mjOCNvt773tXxfsS0mheYwRpuxrM1w3Vv0cSXt6Jt_0Luy1tzdGb7vX6QmLVWnzjfq1kY0IfuyVOv6mjEFVzL60O8vAJQAAD11Ad8ErpbWKnpzX0Oy9cEwao75mC0f0_Mxv_IxRy-vH72sNwnnP5LfgXRAbEDrT_kW61-z_2n7EzyLmaE</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Ai, Ye</creator><creator>Zheng, Qing-Dong</creator><creator>Wang, Meng-Jie</creator><creator>Xiong, Long-Wei</creator><creator>Li, Peng</creator><creator>Guo, Li-Ting</creator><creator>Wang, Meng-Yao</creator><creator>Peng, Dong-Hui</creator><creator>Lan, Si-Ren</creator><creator>Liu, Zhong-Jian</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2793-6768</orcidid><orcidid>https://orcid.org/0000-0003-4390-3878</orcidid></search><sort><creationdate>20231101</creationdate><title>Molecular mechanism of different flower color formation of Cymbidium ensifolium</title><author>Ai, Ye ; Zheng, Qing-Dong ; Wang, Meng-Jie ; Xiong, Long-Wei ; Li, Peng ; Guo, Li-Ting ; Wang, Meng-Yao ; Peng, Dong-Hui ; Lan, Si-Ren ; Liu, Zhong-Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-76027a14c170ac46409de11d5298ac6e81774efa219ad23767ae33c2502fed2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Anthocyanin</topic><topic>Anthocyanins</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Color</topic><topic>Cymbidium ensifolium</topic><topic>Enzymes</topic><topic>Flavones</topic><topic>Flavonoids</topic><topic>Flavonols</topic><topic>Flowers</topic><topic>Isoflavones</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Molecular modelling</topic><topic>Plant Pathology</topic><topic>Plant Sciences</topic><topic>Polyphenols</topic><topic>Sepals</topic><topic>Sequence analysis</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ai, Ye</creatorcontrib><creatorcontrib>Zheng, Qing-Dong</creatorcontrib><creatorcontrib>Wang, Meng-Jie</creatorcontrib><creatorcontrib>Xiong, Long-Wei</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Guo, Li-Ting</creatorcontrib><creatorcontrib>Wang, Meng-Yao</creatorcontrib><creatorcontrib>Peng, Dong-Hui</creatorcontrib><creatorcontrib>Lan, Si-Ren</creatorcontrib><creatorcontrib>Liu, Zhong-Jian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ai, Ye</au><au>Zheng, Qing-Dong</au><au>Wang, Meng-Jie</au><au>Xiong, Long-Wei</au><au>Li, Peng</au><au>Guo, Li-Ting</au><au>Wang, Meng-Yao</au><au>Peng, Dong-Hui</au><au>Lan, Si-Ren</au><au>Liu, Zhong-Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanism of different flower color formation of Cymbidium ensifolium</atitle><jtitle>Plant molecular biology</jtitle><stitle>Plant Mol Biol</stitle><addtitle>Plant Mol Biol</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>113</volume><issue>4-5</issue><spage>193</spage><epage>204</epage><pages>193-204</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>Cymbidium ensifolium is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of C. ensifolium , this research conducted transcriptome and metabolome analyses on four different colored sepals of C. ensifolium . Metabolome analysis detected 204 flavonoid metabolites, including 17 polyphenols, 27 anthocyanins, 75 flavones, 34 flavonols, 25 flavonoids, 18 flavanones, and 8 isoflavones. Among them, purple-red and red sepals contain a lot of anthocyanins, including cyanidin, pelargonin, and paeoniflorin, while yellow-green and white sepals have less anthocyanins detected, and their metabolites are mainly flavonols, flavanones and flavonoids. Transcriptome sequencing analysis showed that the expression levels of the anthocyanin biosynthetic enzyme genes in red and purple-red sepals were significantly higher than those in white and yellow-green sepals of C. ensifolium . The experimental results showed that CeF3′H2 , CeDFR , CeANS , CeF3H and CeUFGT1 may be the key genes involved in anthocyanin production in C. ensifolium sepals, and CeMYB104 has been proved to play an important role in the flower color formation of C. ensifolium . The results of transformation showed that the CeMYB104 is involved in the synthesis of anthocyanins and can form a purple-red color in the white perianth of Phalaenopsis . These findings provide a theoretical reference to understand the formation mechanism of flower color in C. ensifolium . Key message This study identified the differential metabolites and differential genes among different color sepals, determined the key regulatory genes, and constructed a regulatory network for the flower color formation of Cymbidium ensifolium .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>37878187</pmid><doi>10.1007/s11103-023-01382-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2793-6768</orcidid><orcidid>https://orcid.org/0000-0003-4390-3878</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-4412
ispartof Plant molecular biology, 2023-11, Vol.113 (4-5), p.193-204
issn 0167-4412
1573-5028
language eng
recordid cdi_proquest_miscellaneous_2881710040
source Springer Link
subjects Analysis
Anthocyanin
Anthocyanins
Biochemistry
Biomedical and Life Sciences
Color
Cymbidium ensifolium
Enzymes
Flavones
Flavonoids
Flavonols
Flowers
Isoflavones
Life Sciences
Metabolites
Molecular modelling
Plant Pathology
Plant Sciences
Polyphenols
Sepals
Sequence analysis
Transcriptomes
title Molecular mechanism of different flower color formation of Cymbidium ensifolium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanism%20of%20different%20flower%20color%20formation%20of%20Cymbidium%20ensifolium&rft.jtitle=Plant%20molecular%20biology&rft.au=Ai,%20Ye&rft.date=2023-11-01&rft.volume=113&rft.issue=4-5&rft.spage=193&rft.epage=204&rft.pages=193-204&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-023-01382-0&rft_dat=%3Cgale_proqu%3EA776377785%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-76027a14c170ac46409de11d5298ac6e81774efa219ad23767ae33c2502fed2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901665846&rft_id=info:pmid/37878187&rft_galeid=A776377785&rfr_iscdi=true