Loading…
Molecular mechanism of different flower color formation of Cymbidium ensifolium
Cymbidium ensifolium is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of C. ensifolium , this research conducted transcriptome and metabolome analyses on four different colored sep...
Saved in:
Published in: | Plant molecular biology 2023-11, Vol.113 (4-5), p.193-204 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414t-76027a14c170ac46409de11d5298ac6e81774efa219ad23767ae33c2502fed2e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c414t-76027a14c170ac46409de11d5298ac6e81774efa219ad23767ae33c2502fed2e3 |
container_end_page | 204 |
container_issue | 4-5 |
container_start_page | 193 |
container_title | Plant molecular biology |
container_volume | 113 |
creator | Ai, Ye Zheng, Qing-Dong Wang, Meng-Jie Xiong, Long-Wei Li, Peng Guo, Li-Ting Wang, Meng-Yao Peng, Dong-Hui Lan, Si-Ren Liu, Zhong-Jian |
description | Cymbidium ensifolium
is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of
C. ensifolium
, this research conducted transcriptome and metabolome analyses on four different colored sepals of
C. ensifolium
. Metabolome analysis detected 204 flavonoid metabolites, including 17 polyphenols, 27 anthocyanins, 75 flavones, 34 flavonols, 25 flavonoids, 18 flavanones, and 8 isoflavones. Among them, purple-red and red sepals contain a lot of anthocyanins, including cyanidin, pelargonin, and paeoniflorin, while yellow-green and white sepals have less anthocyanins detected, and their metabolites are mainly flavonols, flavanones and flavonoids. Transcriptome sequencing analysis showed that the expression levels of the anthocyanin biosynthetic enzyme genes in red and purple-red sepals were significantly higher than those in white and yellow-green sepals of
C. ensifolium
. The experimental results showed that
CeF3′H2
,
CeDFR
,
CeANS
,
CeF3H
and
CeUFGT1
may be the key genes involved in anthocyanin production in
C. ensifolium
sepals, and
CeMYB104
has been proved to play an important role in the flower color formation of
C. ensifolium
. The results of transformation showed that the
CeMYB104
is involved in the synthesis of anthocyanins and can form a purple-red color in the white perianth of
Phalaenopsis
. These findings provide a theoretical reference to understand the formation mechanism of flower color in
C. ensifolium
.
Key message
This study identified the differential metabolites and differential genes among different color sepals, determined the key regulatory genes, and constructed a regulatory network for the flower color formation of
Cymbidium ensifolium
. |
doi_str_mv | 10.1007/s11103-023-01382-0 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2881710040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A776377785</galeid><sourcerecordid>A776377785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-76027a14c170ac46409de11d5298ac6e81774efa219ad23767ae33c2502fed2e3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMo9rb6B1zIgBs3U_M1ObnLcvGjUOlG1yHNnNSUfNRkBum_N9epCi4khByS5z28Jy8hrxg9Z5TCu8YYo2KkvG8mNB_pE7JjE4hxolw_JTvKFIxSMn5CTlu7o7TLhHpOTgRo0EzDjlx_LhHdGm0dErpvNoeWhuKHOXiPFfMy-Fh-YB1ciaUOvtRkl1DykTk8pJswhzUNmFvwJfbyBXnmbWz48vE8I18_vP9y-DReXX-8PFxcjU4yuYygKAfLpGNArZNK0v2MjM0T32vrFGoGINFbzvZ25gIUWBTC8T6Yx5mjOCNvt773tXxfsS0mheYwRpuxrM1w3Vv0cSXt6Jt_0Luy1tzdGb7vX6QmLVWnzjfq1kY0IfuyVOv6mjEFVzL60O8vAJQAAD11Ad8ErpbWKnpzX0Oy9cEwao75mC0f0_Mxv_IxRy-vH72sNwnnP5LfgXRAbEDrT_kW61-z_2n7EzyLmaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901665846</pqid></control><display><type>article</type><title>Molecular mechanism of different flower color formation of Cymbidium ensifolium</title><source>Springer Link</source><creator>Ai, Ye ; Zheng, Qing-Dong ; Wang, Meng-Jie ; Xiong, Long-Wei ; Li, Peng ; Guo, Li-Ting ; Wang, Meng-Yao ; Peng, Dong-Hui ; Lan, Si-Ren ; Liu, Zhong-Jian</creator><creatorcontrib>Ai, Ye ; Zheng, Qing-Dong ; Wang, Meng-Jie ; Xiong, Long-Wei ; Li, Peng ; Guo, Li-Ting ; Wang, Meng-Yao ; Peng, Dong-Hui ; Lan, Si-Ren ; Liu, Zhong-Jian</creatorcontrib><description>Cymbidium ensifolium
is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of
C. ensifolium
, this research conducted transcriptome and metabolome analyses on four different colored sepals of
C. ensifolium
. Metabolome analysis detected 204 flavonoid metabolites, including 17 polyphenols, 27 anthocyanins, 75 flavones, 34 flavonols, 25 flavonoids, 18 flavanones, and 8 isoflavones. Among them, purple-red and red sepals contain a lot of anthocyanins, including cyanidin, pelargonin, and paeoniflorin, while yellow-green and white sepals have less anthocyanins detected, and their metabolites are mainly flavonols, flavanones and flavonoids. Transcriptome sequencing analysis showed that the expression levels of the anthocyanin biosynthetic enzyme genes in red and purple-red sepals were significantly higher than those in white and yellow-green sepals of
C. ensifolium
. The experimental results showed that
CeF3′H2
,
CeDFR
,
CeANS
,
CeF3H
and
CeUFGT1
may be the key genes involved in anthocyanin production in
C. ensifolium
sepals, and
CeMYB104
has been proved to play an important role in the flower color formation of
C. ensifolium
. The results of transformation showed that the
CeMYB104
is involved in the synthesis of anthocyanins and can form a purple-red color in the white perianth of
Phalaenopsis
. These findings provide a theoretical reference to understand the formation mechanism of flower color in
C. ensifolium
.
Key message
This study identified the differential metabolites and differential genes among different color sepals, determined the key regulatory genes, and constructed a regulatory network for the flower color formation of
Cymbidium ensifolium
.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-023-01382-0</identifier><identifier>PMID: 37878187</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Anthocyanin ; Anthocyanins ; Biochemistry ; Biomedical and Life Sciences ; Color ; Cymbidium ensifolium ; Enzymes ; Flavones ; Flavonoids ; Flavonols ; Flowers ; Isoflavones ; Life Sciences ; Metabolites ; Molecular modelling ; Plant Pathology ; Plant Sciences ; Polyphenols ; Sepals ; Sequence analysis ; Transcriptomes</subject><ispartof>Plant molecular biology, 2023-11, Vol.113 (4-5), p.193-204</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature B.V.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-76027a14c170ac46409de11d5298ac6e81774efa219ad23767ae33c2502fed2e3</citedby><cites>FETCH-LOGICAL-c414t-76027a14c170ac46409de11d5298ac6e81774efa219ad23767ae33c2502fed2e3</cites><orcidid>0000-0003-2793-6768 ; 0000-0003-4390-3878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37878187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ai, Ye</creatorcontrib><creatorcontrib>Zheng, Qing-Dong</creatorcontrib><creatorcontrib>Wang, Meng-Jie</creatorcontrib><creatorcontrib>Xiong, Long-Wei</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Guo, Li-Ting</creatorcontrib><creatorcontrib>Wang, Meng-Yao</creatorcontrib><creatorcontrib>Peng, Dong-Hui</creatorcontrib><creatorcontrib>Lan, Si-Ren</creatorcontrib><creatorcontrib>Liu, Zhong-Jian</creatorcontrib><title>Molecular mechanism of different flower color formation of Cymbidium ensifolium</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><addtitle>Plant Mol Biol</addtitle><description>Cymbidium ensifolium
is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of
C. ensifolium
, this research conducted transcriptome and metabolome analyses on four different colored sepals of
C. ensifolium
. Metabolome analysis detected 204 flavonoid metabolites, including 17 polyphenols, 27 anthocyanins, 75 flavones, 34 flavonols, 25 flavonoids, 18 flavanones, and 8 isoflavones. Among them, purple-red and red sepals contain a lot of anthocyanins, including cyanidin, pelargonin, and paeoniflorin, while yellow-green and white sepals have less anthocyanins detected, and their metabolites are mainly flavonols, flavanones and flavonoids. Transcriptome sequencing analysis showed that the expression levels of the anthocyanin biosynthetic enzyme genes in red and purple-red sepals were significantly higher than those in white and yellow-green sepals of
C. ensifolium
. The experimental results showed that
CeF3′H2
,
CeDFR
,
CeANS
,
CeF3H
and
CeUFGT1
may be the key genes involved in anthocyanin production in
C. ensifolium
sepals, and
CeMYB104
has been proved to play an important role in the flower color formation of
C. ensifolium
. The results of transformation showed that the
CeMYB104
is involved in the synthesis of anthocyanins and can form a purple-red color in the white perianth of
Phalaenopsis
. These findings provide a theoretical reference to understand the formation mechanism of flower color in
C. ensifolium
.
Key message
This study identified the differential metabolites and differential genes among different color sepals, determined the key regulatory genes, and constructed a regulatory network for the flower color formation of
Cymbidium ensifolium
.</description><subject>Analysis</subject><subject>Anthocyanin</subject><subject>Anthocyanins</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Color</subject><subject>Cymbidium ensifolium</subject><subject>Enzymes</subject><subject>Flavones</subject><subject>Flavonoids</subject><subject>Flavonols</subject><subject>Flowers</subject><subject>Isoflavones</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Molecular modelling</subject><subject>Plant Pathology</subject><subject>Plant Sciences</subject><subject>Polyphenols</subject><subject>Sepals</subject><subject>Sequence analysis</subject><subject>Transcriptomes</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rFTEUhoMo9rb6B1zIgBs3U_M1ObnLcvGjUOlG1yHNnNSUfNRkBum_N9epCi4khByS5z28Jy8hrxg9Z5TCu8YYo2KkvG8mNB_pE7JjE4hxolw_JTvKFIxSMn5CTlu7o7TLhHpOTgRo0EzDjlx_LhHdGm0dErpvNoeWhuKHOXiPFfMy-Fh-YB1ciaUOvtRkl1DykTk8pJswhzUNmFvwJfbyBXnmbWz48vE8I18_vP9y-DReXX-8PFxcjU4yuYygKAfLpGNArZNK0v2MjM0T32vrFGoGINFbzvZ25gIUWBTC8T6Yx5mjOCNvt773tXxfsS0mheYwRpuxrM1w3Vv0cSXt6Jt_0Luy1tzdGb7vX6QmLVWnzjfq1kY0IfuyVOv6mjEFVzL60O8vAJQAAD11Ad8ErpbWKnpzX0Oy9cEwao75mC0f0_Mxv_IxRy-vH72sNwnnP5LfgXRAbEDrT_kW61-z_2n7EzyLmaE</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Ai, Ye</creator><creator>Zheng, Qing-Dong</creator><creator>Wang, Meng-Jie</creator><creator>Xiong, Long-Wei</creator><creator>Li, Peng</creator><creator>Guo, Li-Ting</creator><creator>Wang, Meng-Yao</creator><creator>Peng, Dong-Hui</creator><creator>Lan, Si-Ren</creator><creator>Liu, Zhong-Jian</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2793-6768</orcidid><orcidid>https://orcid.org/0000-0003-4390-3878</orcidid></search><sort><creationdate>20231101</creationdate><title>Molecular mechanism of different flower color formation of Cymbidium ensifolium</title><author>Ai, Ye ; Zheng, Qing-Dong ; Wang, Meng-Jie ; Xiong, Long-Wei ; Li, Peng ; Guo, Li-Ting ; Wang, Meng-Yao ; Peng, Dong-Hui ; Lan, Si-Ren ; Liu, Zhong-Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-76027a14c170ac46409de11d5298ac6e81774efa219ad23767ae33c2502fed2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Anthocyanin</topic><topic>Anthocyanins</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Color</topic><topic>Cymbidium ensifolium</topic><topic>Enzymes</topic><topic>Flavones</topic><topic>Flavonoids</topic><topic>Flavonols</topic><topic>Flowers</topic><topic>Isoflavones</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Molecular modelling</topic><topic>Plant Pathology</topic><topic>Plant Sciences</topic><topic>Polyphenols</topic><topic>Sepals</topic><topic>Sequence analysis</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ai, Ye</creatorcontrib><creatorcontrib>Zheng, Qing-Dong</creatorcontrib><creatorcontrib>Wang, Meng-Jie</creatorcontrib><creatorcontrib>Xiong, Long-Wei</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Guo, Li-Ting</creatorcontrib><creatorcontrib>Wang, Meng-Yao</creatorcontrib><creatorcontrib>Peng, Dong-Hui</creatorcontrib><creatorcontrib>Lan, Si-Ren</creatorcontrib><creatorcontrib>Liu, Zhong-Jian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ai, Ye</au><au>Zheng, Qing-Dong</au><au>Wang, Meng-Jie</au><au>Xiong, Long-Wei</au><au>Li, Peng</au><au>Guo, Li-Ting</au><au>Wang, Meng-Yao</au><au>Peng, Dong-Hui</au><au>Lan, Si-Ren</au><au>Liu, Zhong-Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanism of different flower color formation of Cymbidium ensifolium</atitle><jtitle>Plant molecular biology</jtitle><stitle>Plant Mol Biol</stitle><addtitle>Plant Mol Biol</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>113</volume><issue>4-5</issue><spage>193</spage><epage>204</epage><pages>193-204</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>Cymbidium ensifolium
is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of
C. ensifolium
, this research conducted transcriptome and metabolome analyses on four different colored sepals of
C. ensifolium
. Metabolome analysis detected 204 flavonoid metabolites, including 17 polyphenols, 27 anthocyanins, 75 flavones, 34 flavonols, 25 flavonoids, 18 flavanones, and 8 isoflavones. Among them, purple-red and red sepals contain a lot of anthocyanins, including cyanidin, pelargonin, and paeoniflorin, while yellow-green and white sepals have less anthocyanins detected, and their metabolites are mainly flavonols, flavanones and flavonoids. Transcriptome sequencing analysis showed that the expression levels of the anthocyanin biosynthetic enzyme genes in red and purple-red sepals were significantly higher than those in white and yellow-green sepals of
C. ensifolium
. The experimental results showed that
CeF3′H2
,
CeDFR
,
CeANS
,
CeF3H
and
CeUFGT1
may be the key genes involved in anthocyanin production in
C. ensifolium
sepals, and
CeMYB104
has been proved to play an important role in the flower color formation of
C. ensifolium
. The results of transformation showed that the
CeMYB104
is involved in the synthesis of anthocyanins and can form a purple-red color in the white perianth of
Phalaenopsis
. These findings provide a theoretical reference to understand the formation mechanism of flower color in
C. ensifolium
.
Key message
This study identified the differential metabolites and differential genes among different color sepals, determined the key regulatory genes, and constructed a regulatory network for the flower color formation of
Cymbidium ensifolium
.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>37878187</pmid><doi>10.1007/s11103-023-01382-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2793-6768</orcidid><orcidid>https://orcid.org/0000-0003-4390-3878</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4412 |
ispartof | Plant molecular biology, 2023-11, Vol.113 (4-5), p.193-204 |
issn | 0167-4412 1573-5028 |
language | eng |
recordid | cdi_proquest_miscellaneous_2881710040 |
source | Springer Link |
subjects | Analysis Anthocyanin Anthocyanins Biochemistry Biomedical and Life Sciences Color Cymbidium ensifolium Enzymes Flavones Flavonoids Flavonols Flowers Isoflavones Life Sciences Metabolites Molecular modelling Plant Pathology Plant Sciences Polyphenols Sepals Sequence analysis Transcriptomes |
title | Molecular mechanism of different flower color formation of Cymbidium ensifolium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanism%20of%20different%20flower%20color%20formation%20of%20Cymbidium%20ensifolium&rft.jtitle=Plant%20molecular%20biology&rft.au=Ai,%20Ye&rft.date=2023-11-01&rft.volume=113&rft.issue=4-5&rft.spage=193&rft.epage=204&rft.pages=193-204&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-023-01382-0&rft_dat=%3Cgale_proqu%3EA776377785%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-76027a14c170ac46409de11d5298ac6e81774efa219ad23767ae33c2502fed2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901665846&rft_id=info:pmid/37878187&rft_galeid=A776377785&rfr_iscdi=true |