Loading…

Stabilization of Pu(IV) in PuBr4(OPCy3)2 and Comparisons with Structurally Similar ThX4(OPR3)2 (R = Cy, Ph) Molecules

The pursuit of a trivalent plutonium halide phosphine oxide compound, e.g., “PuBr3(OPR)3,” instead led to the isolation of the tetravalent trans-PuIVBr4(OPCy3)2, PuBr/Cy, compound by spontaneous oxidation of PuIII. The donating nature of phosphine oxides has allowed the isolation and characterizatio...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry 2023-11, Vol.62 (44), p.18136-18149
Main Authors: Windorff, Cory J., Goodwin, Conrad A. P., Sperling, Joseph M., Albrecht-Schönzart, Thomas E., Bai, Zhuanling, Evans, William J., Huffman, Zachary K., Jeannin, Renaud, Long, Brian N., Mills, David P., Poe, Todd N., Ziller, Joseph W.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The pursuit of a trivalent plutonium halide phosphine oxide compound, e.g., “PuBr3(OPR)3,” instead led to the isolation of the tetravalent trans-PuIVBr4(OPCy3)2, PuBr/Cy, compound by spontaneous oxidation of PuIII. The donating nature of phosphine oxides has allowed the isolation and characterization of PuBr/Cy by crystallographic, multinuclear NMR, solid state, and solution phase UV–vis-NIR spectroscopic techniques. The presence of a putative plutonyl­(VI) complex formulated as “trans-PuVIO2Br2(OPCy3)2” was also observed spectroscopically and tentatively by single-crystal X-ray diffraction as a cocrystal of PuBr/Cy. A series of trans-ThX4(OPCy3)2 (X = Cl, ThCl/Cy; Br, ThBr/Cy; I, ThI/Cy) complexes were synthesized for comparison to PuBr/Cy. The triphenylphosphine oxide, OPPh3, complexes, trans-AnI4(OPPh3)2 (An = Th, ThI/Ph; U, UI/Ph), were also synthesized for comparison, completing the series trans-UX4(OPPh3)2 (X = Cl, Br, I), UX/Ph. To enable the synthesis of ThI/Cy and ThI/Ph, a new nonaqueous thorium iodide starting material, ThI4(Et2O)2, was synthesized. The syntheses of organic solvent soluble ThI4L2 (L = Et2O, OPCy3, and OPPh3) are the first examples of crystallographically characterized neutral thorium tetraiodide materials beyond binary ThI4. To show the viability of ThI4(Et2O)2 as a starting material for organothorium chemistry, (C5Me4H)3ThI was synthesized and crystallographically characterized.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.3c02575