Loading…

Artificial Intelligence: From Buzzword to Useful Tool in Clinical Pharmacology

The advent of artificial intelligence (AI) in clinical pharmacology and drug development is akin to the dawning of a new era. Previously dismissed as merely technological hype, these approaches have emerged as promising tools in different domains, including health care, demonstrating their potential...

Full description

Saved in:
Bibliographic Details
Published in:Clinical pharmacology and therapeutics 2024-04, Vol.115 (4), p.698-709
Main Authors: Shahin, Mohamed H., Barth, Aline, Podichetty, Jagdeep T., Liu, Qi, Goyal, Navin, Jin, Jin Y., Ouellet, Daniele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3213-a3f19154e6f66b57777432f37d1cac434a4c990ff36f22b1aa4c378665b84cc53
cites cdi_FETCH-LOGICAL-c3213-a3f19154e6f66b57777432f37d1cac434a4c990ff36f22b1aa4c378665b84cc53
container_end_page 709
container_issue 4
container_start_page 698
container_title Clinical pharmacology and therapeutics
container_volume 115
creator Shahin, Mohamed H.
Barth, Aline
Podichetty, Jagdeep T.
Liu, Qi
Goyal, Navin
Jin, Jin Y.
Ouellet, Daniele
description The advent of artificial intelligence (AI) in clinical pharmacology and drug development is akin to the dawning of a new era. Previously dismissed as merely technological hype, these approaches have emerged as promising tools in different domains, including health care, demonstrating their potential to empower clinical pharmacology decision making, revolutionize the drug development landscape, and advance patient care. Although challenges remain, the remarkable progress already made signals that the leap from hype to reality is well underway, and AI promises to offer clinical pharmacology new tools and possibilities for optimizing patient care is gradually coming to fruition. This review dives into the burgeoning world of AI and machine learning (ML), showcasing different applications of AI in clinical pharmacology and the impact of successful AI/ML implementation on drug development and/or regulatory decisions. This review also highlights recommendations for areas of opportunity in clinical pharmacology, including data analysis (e.g., handling large data sets, screening to identify important covariates, and optimizing patient population) and efficiencies (e.g., automation, translation, literature curation, and training). Realizing the benefits of AI in drug development and understanding its value will lead to the successful integration of AI tools in our clinical pharmacology and pharmacometrics armamentarium.
doi_str_mv 10.1002/cpt.3083
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2882322736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2882322736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3213-a3f19154e6f66b57777432f37d1cac434a4c990ff36f22b1aa4c378665b84cc53</originalsourceid><addsrcrecordid>eNp1kF1PwjAUhhujEUQTf4HZpTfDtmcrm3e4iJIQ5QKul660WNOt2G4h8Ost4seV5-bkTZ7z5uRB6JrgIcGY3olNOwScwQnqkxRozFJIT1EfY5zHOQXWQxfev4eY5Fl2jnowyjJCAProZexarbTQ3ETTppXG6LVshLyPJs7W0UO332-tW0WtjZZeqs5EC2tNpJuoMLrRIpzN37irubDGrneX6Exx4-XV9x6g5eRxUTzHs9enaTGexQIogZiDIjlJE8kUY1U6CpMAVTBaEcFFAglPRJ5jpYApSivCQw4_M5ZWWSJECgN0e-zdOPvRSd-WtfYifM8baTtf0iyjQOkI2B8qnPXeSVVunK6525UElwd7ZbBXHuwF9Oa7tatqufoFf3QFID4CW23k7t-ispgvvgo_AeeUd8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882322736</pqid></control><display><type>article</type><title>Artificial Intelligence: From Buzzword to Useful Tool in Clinical Pharmacology</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Shahin, Mohamed H. ; Barth, Aline ; Podichetty, Jagdeep T. ; Liu, Qi ; Goyal, Navin ; Jin, Jin Y. ; Ouellet, Daniele</creator><creatorcontrib>Shahin, Mohamed H. ; Barth, Aline ; Podichetty, Jagdeep T. ; Liu, Qi ; Goyal, Navin ; Jin, Jin Y. ; Ouellet, Daniele</creatorcontrib><description>The advent of artificial intelligence (AI) in clinical pharmacology and drug development is akin to the dawning of a new era. Previously dismissed as merely technological hype, these approaches have emerged as promising tools in different domains, including health care, demonstrating their potential to empower clinical pharmacology decision making, revolutionize the drug development landscape, and advance patient care. Although challenges remain, the remarkable progress already made signals that the leap from hype to reality is well underway, and AI promises to offer clinical pharmacology new tools and possibilities for optimizing patient care is gradually coming to fruition. This review dives into the burgeoning world of AI and machine learning (ML), showcasing different applications of AI in clinical pharmacology and the impact of successful AI/ML implementation on drug development and/or regulatory decisions. This review also highlights recommendations for areas of opportunity in clinical pharmacology, including data analysis (e.g., handling large data sets, screening to identify important covariates, and optimizing patient population) and efficiencies (e.g., automation, translation, literature curation, and training). Realizing the benefits of AI in drug development and understanding its value will lead to the successful integration of AI tools in our clinical pharmacology and pharmacometrics armamentarium.</description><identifier>ISSN: 0009-9236</identifier><identifier>EISSN: 1532-6535</identifier><identifier>DOI: 10.1002/cpt.3083</identifier><identifier>PMID: 37881133</identifier><language>eng</language><publisher>United States</publisher><subject>Artificial Intelligence ; Automation ; Clinical Decision-Making ; Humans ; Machine Learning ; Pharmacology, Clinical</subject><ispartof>Clinical pharmacology and therapeutics, 2024-04, Vol.115 (4), p.698-709</ispartof><rights>2023 The Authors. © 2023 American Society for Clinical Pharmacology and Therapeutics.</rights><rights>2023 The Authors. Clinical Pharmacology &amp; Therapeutics © 2023 American Society for Clinical Pharmacology and Therapeutics.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3213-a3f19154e6f66b57777432f37d1cac434a4c990ff36f22b1aa4c378665b84cc53</citedby><cites>FETCH-LOGICAL-c3213-a3f19154e6f66b57777432f37d1cac434a4c990ff36f22b1aa4c378665b84cc53</cites><orcidid>0009-0006-2794-1283 ; 0000-0002-4788-6051 ; 0000-0002-4053-4213 ; 0000-0002-8521-0108 ; 0000-0002-3627-0323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37881133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shahin, Mohamed H.</creatorcontrib><creatorcontrib>Barth, Aline</creatorcontrib><creatorcontrib>Podichetty, Jagdeep T.</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Goyal, Navin</creatorcontrib><creatorcontrib>Jin, Jin Y.</creatorcontrib><creatorcontrib>Ouellet, Daniele</creatorcontrib><title>Artificial Intelligence: From Buzzword to Useful Tool in Clinical Pharmacology</title><title>Clinical pharmacology and therapeutics</title><addtitle>Clin Pharmacol Ther</addtitle><description>The advent of artificial intelligence (AI) in clinical pharmacology and drug development is akin to the dawning of a new era. Previously dismissed as merely technological hype, these approaches have emerged as promising tools in different domains, including health care, demonstrating their potential to empower clinical pharmacology decision making, revolutionize the drug development landscape, and advance patient care. Although challenges remain, the remarkable progress already made signals that the leap from hype to reality is well underway, and AI promises to offer clinical pharmacology new tools and possibilities for optimizing patient care is gradually coming to fruition. This review dives into the burgeoning world of AI and machine learning (ML), showcasing different applications of AI in clinical pharmacology and the impact of successful AI/ML implementation on drug development and/or regulatory decisions. This review also highlights recommendations for areas of opportunity in clinical pharmacology, including data analysis (e.g., handling large data sets, screening to identify important covariates, and optimizing patient population) and efficiencies (e.g., automation, translation, literature curation, and training). Realizing the benefits of AI in drug development and understanding its value will lead to the successful integration of AI tools in our clinical pharmacology and pharmacometrics armamentarium.</description><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Clinical Decision-Making</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Pharmacology, Clinical</subject><issn>0009-9236</issn><issn>1532-6535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kF1PwjAUhhujEUQTf4HZpTfDtmcrm3e4iJIQ5QKul660WNOt2G4h8Ost4seV5-bkTZ7z5uRB6JrgIcGY3olNOwScwQnqkxRozFJIT1EfY5zHOQXWQxfev4eY5Fl2jnowyjJCAProZexarbTQ3ETTppXG6LVshLyPJs7W0UO332-tW0WtjZZeqs5EC2tNpJuoMLrRIpzN37irubDGrneX6Exx4-XV9x6g5eRxUTzHs9enaTGexQIogZiDIjlJE8kUY1U6CpMAVTBaEcFFAglPRJ5jpYApSivCQw4_M5ZWWSJECgN0e-zdOPvRSd-WtfYifM8baTtf0iyjQOkI2B8qnPXeSVVunK6525UElwd7ZbBXHuwF9Oa7tatqufoFf3QFID4CW23k7t-ispgvvgo_AeeUd8I</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Shahin, Mohamed H.</creator><creator>Barth, Aline</creator><creator>Podichetty, Jagdeep T.</creator><creator>Liu, Qi</creator><creator>Goyal, Navin</creator><creator>Jin, Jin Y.</creator><creator>Ouellet, Daniele</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0006-2794-1283</orcidid><orcidid>https://orcid.org/0000-0002-4788-6051</orcidid><orcidid>https://orcid.org/0000-0002-4053-4213</orcidid><orcidid>https://orcid.org/0000-0002-8521-0108</orcidid><orcidid>https://orcid.org/0000-0002-3627-0323</orcidid></search><sort><creationdate>202404</creationdate><title>Artificial Intelligence: From Buzzword to Useful Tool in Clinical Pharmacology</title><author>Shahin, Mohamed H. ; Barth, Aline ; Podichetty, Jagdeep T. ; Liu, Qi ; Goyal, Navin ; Jin, Jin Y. ; Ouellet, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3213-a3f19154e6f66b57777432f37d1cac434a4c990ff36f22b1aa4c378665b84cc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Clinical Decision-Making</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Pharmacology, Clinical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahin, Mohamed H.</creatorcontrib><creatorcontrib>Barth, Aline</creatorcontrib><creatorcontrib>Podichetty, Jagdeep T.</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Goyal, Navin</creatorcontrib><creatorcontrib>Jin, Jin Y.</creatorcontrib><creatorcontrib>Ouellet, Daniele</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical pharmacology and therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahin, Mohamed H.</au><au>Barth, Aline</au><au>Podichetty, Jagdeep T.</au><au>Liu, Qi</au><au>Goyal, Navin</au><au>Jin, Jin Y.</au><au>Ouellet, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence: From Buzzword to Useful Tool in Clinical Pharmacology</atitle><jtitle>Clinical pharmacology and therapeutics</jtitle><addtitle>Clin Pharmacol Ther</addtitle><date>2024-04</date><risdate>2024</risdate><volume>115</volume><issue>4</issue><spage>698</spage><epage>709</epage><pages>698-709</pages><issn>0009-9236</issn><eissn>1532-6535</eissn><abstract>The advent of artificial intelligence (AI) in clinical pharmacology and drug development is akin to the dawning of a new era. Previously dismissed as merely technological hype, these approaches have emerged as promising tools in different domains, including health care, demonstrating their potential to empower clinical pharmacology decision making, revolutionize the drug development landscape, and advance patient care. Although challenges remain, the remarkable progress already made signals that the leap from hype to reality is well underway, and AI promises to offer clinical pharmacology new tools and possibilities for optimizing patient care is gradually coming to fruition. This review dives into the burgeoning world of AI and machine learning (ML), showcasing different applications of AI in clinical pharmacology and the impact of successful AI/ML implementation on drug development and/or regulatory decisions. This review also highlights recommendations for areas of opportunity in clinical pharmacology, including data analysis (e.g., handling large data sets, screening to identify important covariates, and optimizing patient population) and efficiencies (e.g., automation, translation, literature curation, and training). Realizing the benefits of AI in drug development and understanding its value will lead to the successful integration of AI tools in our clinical pharmacology and pharmacometrics armamentarium.</abstract><cop>United States</cop><pmid>37881133</pmid><doi>10.1002/cpt.3083</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0006-2794-1283</orcidid><orcidid>https://orcid.org/0000-0002-4788-6051</orcidid><orcidid>https://orcid.org/0000-0002-4053-4213</orcidid><orcidid>https://orcid.org/0000-0002-8521-0108</orcidid><orcidid>https://orcid.org/0000-0002-3627-0323</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0009-9236
ispartof Clinical pharmacology and therapeutics, 2024-04, Vol.115 (4), p.698-709
issn 0009-9236
1532-6535
language eng
recordid cdi_proquest_miscellaneous_2882322736
source Wiley-Blackwell Read & Publish Collection
subjects Artificial Intelligence
Automation
Clinical Decision-Making
Humans
Machine Learning
Pharmacology, Clinical
title Artificial Intelligence: From Buzzword to Useful Tool in Clinical Pharmacology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence:%20From%20Buzzword%20to%20Useful%20Tool%20in%20Clinical%20Pharmacology&rft.jtitle=Clinical%20pharmacology%20and%20therapeutics&rft.au=Shahin,%20Mohamed%20H.&rft.date=2024-04&rft.volume=115&rft.issue=4&rft.spage=698&rft.epage=709&rft.pages=698-709&rft.issn=0009-9236&rft.eissn=1532-6535&rft_id=info:doi/10.1002/cpt.3083&rft_dat=%3Cproquest_cross%3E2882322736%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3213-a3f19154e6f66b57777432f37d1cac434a4c990ff36f22b1aa4c378665b84cc53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2882322736&rft_id=info:pmid/37881133&rfr_iscdi=true