Loading…

Insight into the nodal cells transcriptome of the streptophyte green alga Chara braunii S276

Charophyceae are the most complex streptophyte algae, possessing tissue‐like structures, rhizoids and a cellulose‐pectin‐based cell wall akin to embryophytes. Together with the Zygnematophyceae and the Coleochaetophycae, the Charophyceae form a grade in which the Zygnematophyceae share a last common...

Full description

Saved in:
Bibliographic Details
Published in:Physiologia plantarum 2023-09, Vol.175 (5), p.e14025-n/a
Main Authors: Heß, Daniel, Holzhausen, Anja, Hess, Wolfgang R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Charophyceae are the most complex streptophyte algae, possessing tissue‐like structures, rhizoids and a cellulose‐pectin‐based cell wall akin to embryophytes. Together with the Zygnematophyceae and the Coleochaetophycae, the Charophyceae form a grade in which the Zygnematophyceae share a last common ancestor with land plants. The availability of genomic data, its short life cycle, and the ease of non‐sterile cultivation in the laboratory have made the species Chara braunii an emerging model system for streptophyte terrestrialization and early land plant evolution. In this study, tissue containing nodal cells was prepared under the stereomicroscope, and an RNA‐seq dataset was generated and compared to transcriptome data from whole plantlets. In both samples, transcript coverage was high for genes encoding ribosomal proteins and a homolog of the putative PAX3‐ and PAX7‐binding protein 1. Gene ontology was used to classify the putative functions of the differently expressed genes. In the nodal cell sample, main upregulated molecular functions were related to protein, nucleic acid, ATP‐ and DNA binding. Looking at specific genes, several signaling‐related genes and genes encoding sugar‐metabolizing enzymes were found to be expressed at a higher level in the nodal cell sample, while photosynthesis‐and chloroplast‐related genes were expressed at a comparatively lower level. We detected the transcription of 21 different genes encoding DUF4360‐containing cysteine‐rich proteins. The data contribute to the growing understanding of Charophyceae developmental biology by providing a first insight into the transcriptome composition of Chara nodal cells.
ISSN:0031-9317
1399-3054
DOI:10.1111/ppl.14025