Loading…
Thermophysical properties of anhydride-cured epoxy/nano-clay composites
Polymer nano‐composites made with a matrix of anhydride‐cured diglycidyl ether of bisphenol A (DGEBA) and reinforced with organo‐montmorillonite clay were investigated. A sonication technique was used to process the epoxy/clay nano‐composites. The thermal properties of the nano‐composites were measu...
Saved in:
Published in: | Polymer composites 2005-02, Vol.26 (1), p.42-51 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polymer nano‐composites made with a matrix of anhydride‐cured diglycidyl ether of bisphenol A (DGEBA) and reinforced with organo‐montmorillonite clay were investigated. A sonication technique was used to process the epoxy/clay nano‐composites. The thermal properties of the nano‐composites were measured with dynamic mechanical analysis (DMA). The glass transition temperature Tg of the anhydride‐cured epoxy was higher than the room temperature (RT). For samples with 6.25 wt% (4.0 vol%) of clay, the storage modulus at 30°C and at (Tg + 15)°C was observed to increase 43% and 230%, respectively, relative to the value of unfilled epoxy. The clay reinforcing effect was evaluated using the Tandon‐Weng model for randomly oriented particulate filled composites. Transmission electron microscopy (TEM) examination of the nano‐composites prepared by sonication of clays in acetone showed well‐dispersed platelets in the nano‐composites. The clay nano‐platelets were observed to be well‐intercalated/expanded in the anhydride‐cured epoxy resin system. POLYM. COMPOS., 26:42–51, 2005. © 2004 Society of Plastics Engineers. |
---|---|
ISSN: | 0272-8397 1548-0569 |
DOI: | 10.1002/pc.20071 |