Loading…

Chain-Kinked Design: Improving Stretchability of Polymer Semiconductors through Nonlinear Conjugated Linkers

The manipulation of the polymer backbone structure has a profound influence on the crystalline behavior and charge transport characteristics of polymers. These strategies are commonly employed to optimize the performance of stretchable polymer semiconductors. However, a universal method that can be...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-11, Vol.15 (44), p.51507-51517
Main Authors: Chang, Ting-Wei, Weng, Yu-Ching, Tsai, Yi-Ting, Jiang, Yuanwen, Matsuhisa, Naoji, Shih, Chien-Chung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The manipulation of the polymer backbone structure has a profound influence on the crystalline behavior and charge transport characteristics of polymers. These strategies are commonly employed to optimize the performance of stretchable polymer semiconductors. However, a universal method that can be applied to conjugated polymers with different donor–acceptor combinations is still lacking. In this study, we propose a universal strategy to boost the stretchability of polymers by incorporating the nonlinear conjugated linker (NCL) into the main chain. Specifically, we incorporate meta-dibromobenzene (MB), characterized by its asymmetric linkage sites, as the NCL into the backbone of diketopyrrolopyrrole-thiophene-based (DPP-based) polymers. Our research demonstrates that the introduction of MB prompts chain-kinking, thereby disrupting the linearity and central symmetry of the DPP conjugated backbone. This modification reshapes the polymer conformation, decreasing the radius of gyration and broadening the free volume, which consequently adjusts the level of crystallinity, leading to a considerable increase in the stretchability of the polymer. Importantly, this method increases stretchability without compromising mobility and exhibits broad applicability across a wide range of donor–acceptor pair polymers. Leveraging this strategy, fully stretchable transistors were fabricated using a DPP polymer that incorporates 10 mol % of MB. These transistors display a mobility of approximately 0.5 cm2 V–1 s–1 and prove remarkably durable, maintaining 90% of this mobility even after enduring 1000 cycles at 25% strain. Overall, we propose a method to systematically control the main-chain conformation, thereby enhancing the stretchability of conjugated polymers in a widely applicable manner.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c10033