Loading…

Synthesis, supramolecular aggregation, and NIR-II phosphorescence of isocyanorhodium() zwitterions

Development of new second near-infrared (NIR-II, 1000-1700 nm) luminophores is highly desirable, and d 8 square-planar metal complexes with NIR-II phosphorescence have been rarely reported. Herein, we explore an asymmetric coordination paradigm to achieve the first creation of NIR-II phosphorescent...

Full description

Saved in:
Bibliographic Details
Published in:Chemical science (Cambridge) 2023-10, Vol.14 (41), p.1149-11498
Main Authors: Wei, Wenxuan, Wang, Jun, Kang, Xiaomei, Li, Haoquan, He, Qun, Chang, Guanjun, Bu, Weifeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Development of new second near-infrared (NIR-II, 1000-1700 nm) luminophores is highly desirable, and d 8 square-planar metal complexes with NIR-II phosphorescence have been rarely reported. Herein, we explore an asymmetric coordination paradigm to achieve the first creation of NIR-II phosphorescent isocyanorhodium( i ) zwitterions. They show a strong tendency for aggregation in solution, arising from close Rh( i ) Rh( i ) contacts that are further intensified by π-π stacking interactions and the hydrophilic-hydrophobic effect. Based on such supramolecular aggregation, zwitterions 2 and 5 are found to yield NIR-II phosphorescence emissions centered at 1005 and 1120 (1210, shoulder) nm in methanol-water mixed solvents, respectively. These two bands show red shifts to 1070 and 1130 (1230, shoulder) nm in the corresponding polymer nanoparticles in water. The resulting polymer nanoparticles can brighten in vivo tumor issues in the NIR-II region with a long-circulating time. In view of the synthetic diversity established by the asymmetric coordination paradigm, this work provides an extraordinary opportunity to explore NIR-II luminophores. The designed arylisocyanidorhodium( i ) zwitterions 2 and 5 exhibit intense NIR-II phosphorescence, and their polymer nanoparticles were applied as bioimaging agents.
ISSN:2041-6520
2041-6539
DOI:10.1039/d3sc03508e