Loading…

Targeting multiple disease hallmarks using a synergistic disease-modifying drug combination ameliorates osteoarthritis via inhibition of senescence and inflammation

Osteoarthritis (OA), is a debilitating disease characterized by progressive cartilage degradation, synovial inflammation, and chondrocyte senescence. Various treatment agents independently targeting these hallmarks have been investigated. However, due to the complex multifaceted nature of OA, no dis...

Full description

Saved in:
Bibliographic Details
Published in:Life sciences (1973) 2023-12, Vol.334, p.122212-122212, Article 122212
Main Authors: Singh, Nihal, Bhattacharjee, Arijit, Kumar, Praganesh, Katti, Dhirendra S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Osteoarthritis (OA), is a debilitating disease characterized by progressive cartilage degradation, synovial inflammation, and chondrocyte senescence. Various treatment agents independently targeting these hallmarks have been investigated. However, due to the complex multifaceted nature of OA, no disease-modifying osteoarthritis drugs are clinically available. In an attempt to overcome this, we developed a combinatorial approach and demonstrated the efficacy of TsC [Tissue inhibitor of metalloproteinase-3 (TIMP3) + sulfated carboxymethylcellulose (sCMC) (TsC-PL)] and piperlongumine (PL) for the amelioration of OA in a goat ex vivo OA model. The efficacy of the drug combination was evaluated using the goat ex vivo OA explant model and results were validated in clinically relevant human OA cartilage explants. The chondroprotective effects were evaluated in terms of reduced inflammation and cartilage matrix loss, reduction in chondrosenescence, and reduced oxidative stress. A combination of TsC and PL (TsC-PL) significantly reduced inflammation, cartilage matrix loss, chondrosenescence, and oxidative stress in the goat ex vivo OA model and showed chondroprotective effects. Further, similar chondroprotective effects were observed in human OA cartilage. Additionally, the coefficient of drug interaction analysis indicated that the combination of TsC and PL had a synergistic effect in reducing matrix degrading proteases and inflammation (goat ex vivo OA model) and Reactive oxygen species (ROS) production (human OA cartilage). Combinatorial treatment with TsC and PL demonstrated potential disease-modifying effects for the treatment of osteoarthritis via inhibition of inflammation and senescence and supports the usage of treatment strategies targeting multiple pathological factors of OA simultaneously.
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2023.122212