Loading…
MOF-based heterogeneous catalysis in continuous flow via incorporation onto polymer-based spherical activated carbon supports
We present an approach to harnessing the tuneable catalytic properties of complex nanomaterials for continuous flow heterogeneous catalysis by combining them with the scalable and industrially implementable properties of carbon pelleted supports. This approach, in turn, will enable these catalytic m...
Saved in:
Published in: | Nanoscale 2023-11, Vol.15 (44), p.17910-17921 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-3c0afeba9fe16e709dd445b5448c2b04a04c02231d950202a301e89f293138b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-3c0afeba9fe16e709dd445b5448c2b04a04c02231d950202a301e89f293138b83 |
container_end_page | 17921 |
container_issue | 44 |
container_start_page | 17910 |
container_title | Nanoscale |
container_volume | 15 |
creator | Griffiths, Anthony Boyall, Sarah L. Müller, Pia Harrington, John P. Sobolewska, Anna M. Reynolds, William R. Bourne, Richard A. Wu, Kejun Collins, Sean M. Muldowney, Mark Chamberlain, Thomas W. |
description | We present an approach to harnessing the tuneable catalytic properties of complex nanomaterials for continuous flow heterogeneous catalysis by combining them with the scalable and industrially implementable properties of carbon pelleted supports. This approach, in turn, will enable these catalytic materials, which largely currently exist in forms unsuitable for this application (
e.g.
powders), to be fully integrated into large scale, chemical processes. A composite heterogeneous catalyst consisting of a metal–organic framework-based Lewis acid, MIL-100(Sc), immobilised onto polymer-based spherical activated carbon (PBSAC) support has been developed. The material was characterised by focused ion beam-scanning electron microscopy-energy dispersive X-ray analysis, powder X-ray diffraction, N
2
adsorption, thermogravimetric analysis, atomic absorption spectroscopy, light scattering and crush testing with the catalytic activity studied in continuous flow. The mechanically robust spherical geometry makes the composite material ideal for application in packed-bed reactors. The catalyst was observed to operate without any loss in activity at steady state for 9 hours when utilised as a Lewis acid catalyst for the intramolecular cyclisation of (±)-citronellal as a model reaction. This work paves the way for further development into the exploitation of MOF-based continuous flow heterogeneous catalysis. |
doi_str_mv | 10.1039/d3nr03634k |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2884182702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884182702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-3c0afeba9fe16e709dd445b5448c2b04a04c02231d950202a301e89f293138b83</originalsourceid><addsrcrecordid>eNpdkU9LAzEQxRdRsFYvfoKAFxFWJ392mxylWhWrBdHzks1mbep2sybZSg9-d1NbPHia4fGbx8y8JDnFcImBiquKtg5oTtnHXjIgwCCldET2__qcHSZH3i8AchGxQfL9NJukpfS6QnMdtLPvutW290jJIJu1Nx6ZFinbBtP2G71u7BdaGRllZV1nnQzGtigCFnW2WS-12_n5bq6dUbJBUgWzkiFqSroy0r7v4mTwx8lBLRuvT3Z1mLxNbl_H9-l0dvcwvp6mihIeUqpA1rqUotY41yMQVcVYVmaMcUVKYBKYAkIorkQGBIikgDUXNREUU15yOkzOt76ds5-99qFYGq9008jfYwvCOcOcjIBE9OwfurC9a-N2kRLxt1lGNoYXW0o5673TddE5s5RuXWAoNkkUN_T55TeJR_oD2MZ9ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890365528</pqid></control><display><type>article</type><title>MOF-based heterogeneous catalysis in continuous flow via incorporation onto polymer-based spherical activated carbon supports</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Griffiths, Anthony ; Boyall, Sarah L. ; Müller, Pia ; Harrington, John P. ; Sobolewska, Anna M. ; Reynolds, William R. ; Bourne, Richard A. ; Wu, Kejun ; Collins, Sean M. ; Muldowney, Mark ; Chamberlain, Thomas W.</creator><creatorcontrib>Griffiths, Anthony ; Boyall, Sarah L. ; Müller, Pia ; Harrington, John P. ; Sobolewska, Anna M. ; Reynolds, William R. ; Bourne, Richard A. ; Wu, Kejun ; Collins, Sean M. ; Muldowney, Mark ; Chamberlain, Thomas W.</creatorcontrib><description>We present an approach to harnessing the tuneable catalytic properties of complex nanomaterials for continuous flow heterogeneous catalysis by combining them with the scalable and industrially implementable properties of carbon pelleted supports. This approach, in turn, will enable these catalytic materials, which largely currently exist in forms unsuitable for this application (
e.g.
powders), to be fully integrated into large scale, chemical processes. A composite heterogeneous catalyst consisting of a metal–organic framework-based Lewis acid, MIL-100(Sc), immobilised onto polymer-based spherical activated carbon (PBSAC) support has been developed. The material was characterised by focused ion beam-scanning electron microscopy-energy dispersive X-ray analysis, powder X-ray diffraction, N
2
adsorption, thermogravimetric analysis, atomic absorption spectroscopy, light scattering and crush testing with the catalytic activity studied in continuous flow. The mechanically robust spherical geometry makes the composite material ideal for application in packed-bed reactors. The catalyst was observed to operate without any loss in activity at steady state for 9 hours when utilised as a Lewis acid catalyst for the intramolecular cyclisation of (±)-citronellal as a model reaction. This work paves the way for further development into the exploitation of MOF-based continuous flow heterogeneous catalysis.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr03634k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectroscopy ; Activated carbon ; Catalysis ; Catalysts ; Catalytic activity ; Chemical reactions ; Citronellal ; Composite materials ; Continuous flow ; Crush tests ; Energy dispersive X ray analysis ; Ion beams ; Lewis acid ; Metal-organic frameworks ; Nanomaterials ; Polymers ; Thermogravimetric analysis ; X ray analysis ; X ray powder diffraction</subject><ispartof>Nanoscale, 2023-11, Vol.15 (44), p.17910-17921</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-3c0afeba9fe16e709dd445b5448c2b04a04c02231d950202a301e89f293138b83</citedby><cites>FETCH-LOGICAL-c328t-3c0afeba9fe16e709dd445b5448c2b04a04c02231d950202a301e89f293138b83</cites><orcidid>0000-0001-5049-8335 ; 0000-0001-8100-6452 ; 0000-0001-7107-6297 ; 0000-0002-0100-5888 ; 0000-0002-5151-6360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Griffiths, Anthony</creatorcontrib><creatorcontrib>Boyall, Sarah L.</creatorcontrib><creatorcontrib>Müller, Pia</creatorcontrib><creatorcontrib>Harrington, John P.</creatorcontrib><creatorcontrib>Sobolewska, Anna M.</creatorcontrib><creatorcontrib>Reynolds, William R.</creatorcontrib><creatorcontrib>Bourne, Richard A.</creatorcontrib><creatorcontrib>Wu, Kejun</creatorcontrib><creatorcontrib>Collins, Sean M.</creatorcontrib><creatorcontrib>Muldowney, Mark</creatorcontrib><creatorcontrib>Chamberlain, Thomas W.</creatorcontrib><title>MOF-based heterogeneous catalysis in continuous flow via incorporation onto polymer-based spherical activated carbon supports</title><title>Nanoscale</title><description>We present an approach to harnessing the tuneable catalytic properties of complex nanomaterials for continuous flow heterogeneous catalysis by combining them with the scalable and industrially implementable properties of carbon pelleted supports. This approach, in turn, will enable these catalytic materials, which largely currently exist in forms unsuitable for this application (
e.g.
powders), to be fully integrated into large scale, chemical processes. A composite heterogeneous catalyst consisting of a metal–organic framework-based Lewis acid, MIL-100(Sc), immobilised onto polymer-based spherical activated carbon (PBSAC) support has been developed. The material was characterised by focused ion beam-scanning electron microscopy-energy dispersive X-ray analysis, powder X-ray diffraction, N
2
adsorption, thermogravimetric analysis, atomic absorption spectroscopy, light scattering and crush testing with the catalytic activity studied in continuous flow. The mechanically robust spherical geometry makes the composite material ideal for application in packed-bed reactors. The catalyst was observed to operate without any loss in activity at steady state for 9 hours when utilised as a Lewis acid catalyst for the intramolecular cyclisation of (±)-citronellal as a model reaction. This work paves the way for further development into the exploitation of MOF-based continuous flow heterogeneous catalysis.</description><subject>Absorption spectroscopy</subject><subject>Activated carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reactions</subject><subject>Citronellal</subject><subject>Composite materials</subject><subject>Continuous flow</subject><subject>Crush tests</subject><subject>Energy dispersive X ray analysis</subject><subject>Ion beams</subject><subject>Lewis acid</subject><subject>Metal-organic frameworks</subject><subject>Nanomaterials</subject><subject>Polymers</subject><subject>Thermogravimetric analysis</subject><subject>X ray analysis</subject><subject>X ray powder diffraction</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU9LAzEQxRdRsFYvfoKAFxFWJ392mxylWhWrBdHzks1mbep2sybZSg9-d1NbPHia4fGbx8y8JDnFcImBiquKtg5oTtnHXjIgwCCldET2__qcHSZH3i8AchGxQfL9NJukpfS6QnMdtLPvutW290jJIJu1Nx6ZFinbBtP2G71u7BdaGRllZV1nnQzGtigCFnW2WS-12_n5bq6dUbJBUgWzkiFqSroy0r7v4mTwx8lBLRuvT3Z1mLxNbl_H9-l0dvcwvp6mihIeUqpA1rqUotY41yMQVcVYVmaMcUVKYBKYAkIorkQGBIikgDUXNREUU15yOkzOt76ds5-99qFYGq9008jfYwvCOcOcjIBE9OwfurC9a-N2kRLxt1lGNoYXW0o5673TddE5s5RuXWAoNkkUN_T55TeJR_oD2MZ9ag</recordid><startdate>20231116</startdate><enddate>20231116</enddate><creator>Griffiths, Anthony</creator><creator>Boyall, Sarah L.</creator><creator>Müller, Pia</creator><creator>Harrington, John P.</creator><creator>Sobolewska, Anna M.</creator><creator>Reynolds, William R.</creator><creator>Bourne, Richard A.</creator><creator>Wu, Kejun</creator><creator>Collins, Sean M.</creator><creator>Muldowney, Mark</creator><creator>Chamberlain, Thomas W.</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5049-8335</orcidid><orcidid>https://orcid.org/0000-0001-8100-6452</orcidid><orcidid>https://orcid.org/0000-0001-7107-6297</orcidid><orcidid>https://orcid.org/0000-0002-0100-5888</orcidid><orcidid>https://orcid.org/0000-0002-5151-6360</orcidid></search><sort><creationdate>20231116</creationdate><title>MOF-based heterogeneous catalysis in continuous flow via incorporation onto polymer-based spherical activated carbon supports</title><author>Griffiths, Anthony ; Boyall, Sarah L. ; Müller, Pia ; Harrington, John P. ; Sobolewska, Anna M. ; Reynolds, William R. ; Bourne, Richard A. ; Wu, Kejun ; Collins, Sean M. ; Muldowney, Mark ; Chamberlain, Thomas W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-3c0afeba9fe16e709dd445b5448c2b04a04c02231d950202a301e89f293138b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectroscopy</topic><topic>Activated carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reactions</topic><topic>Citronellal</topic><topic>Composite materials</topic><topic>Continuous flow</topic><topic>Crush tests</topic><topic>Energy dispersive X ray analysis</topic><topic>Ion beams</topic><topic>Lewis acid</topic><topic>Metal-organic frameworks</topic><topic>Nanomaterials</topic><topic>Polymers</topic><topic>Thermogravimetric analysis</topic><topic>X ray analysis</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griffiths, Anthony</creatorcontrib><creatorcontrib>Boyall, Sarah L.</creatorcontrib><creatorcontrib>Müller, Pia</creatorcontrib><creatorcontrib>Harrington, John P.</creatorcontrib><creatorcontrib>Sobolewska, Anna M.</creatorcontrib><creatorcontrib>Reynolds, William R.</creatorcontrib><creatorcontrib>Bourne, Richard A.</creatorcontrib><creatorcontrib>Wu, Kejun</creatorcontrib><creatorcontrib>Collins, Sean M.</creatorcontrib><creatorcontrib>Muldowney, Mark</creatorcontrib><creatorcontrib>Chamberlain, Thomas W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griffiths, Anthony</au><au>Boyall, Sarah L.</au><au>Müller, Pia</au><au>Harrington, John P.</au><au>Sobolewska, Anna M.</au><au>Reynolds, William R.</au><au>Bourne, Richard A.</au><au>Wu, Kejun</au><au>Collins, Sean M.</au><au>Muldowney, Mark</au><au>Chamberlain, Thomas W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOF-based heterogeneous catalysis in continuous flow via incorporation onto polymer-based spherical activated carbon supports</atitle><jtitle>Nanoscale</jtitle><date>2023-11-16</date><risdate>2023</risdate><volume>15</volume><issue>44</issue><spage>17910</spage><epage>17921</epage><pages>17910-17921</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>We present an approach to harnessing the tuneable catalytic properties of complex nanomaterials for continuous flow heterogeneous catalysis by combining them with the scalable and industrially implementable properties of carbon pelleted supports. This approach, in turn, will enable these catalytic materials, which largely currently exist in forms unsuitable for this application (
e.g.
powders), to be fully integrated into large scale, chemical processes. A composite heterogeneous catalyst consisting of a metal–organic framework-based Lewis acid, MIL-100(Sc), immobilised onto polymer-based spherical activated carbon (PBSAC) support has been developed. The material was characterised by focused ion beam-scanning electron microscopy-energy dispersive X-ray analysis, powder X-ray diffraction, N
2
adsorption, thermogravimetric analysis, atomic absorption spectroscopy, light scattering and crush testing with the catalytic activity studied in continuous flow. The mechanically robust spherical geometry makes the composite material ideal for application in packed-bed reactors. The catalyst was observed to operate without any loss in activity at steady state for 9 hours when utilised as a Lewis acid catalyst for the intramolecular cyclisation of (±)-citronellal as a model reaction. This work paves the way for further development into the exploitation of MOF-based continuous flow heterogeneous catalysis.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3nr03634k</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5049-8335</orcidid><orcidid>https://orcid.org/0000-0001-8100-6452</orcidid><orcidid>https://orcid.org/0000-0001-7107-6297</orcidid><orcidid>https://orcid.org/0000-0002-0100-5888</orcidid><orcidid>https://orcid.org/0000-0002-5151-6360</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2023-11, Vol.15 (44), p.17910-17921 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2884182702 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Absorption spectroscopy Activated carbon Catalysis Catalysts Catalytic activity Chemical reactions Citronellal Composite materials Continuous flow Crush tests Energy dispersive X ray analysis Ion beams Lewis acid Metal-organic frameworks Nanomaterials Polymers Thermogravimetric analysis X ray analysis X ray powder diffraction |
title | MOF-based heterogeneous catalysis in continuous flow via incorporation onto polymer-based spherical activated carbon supports |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOF-based%20heterogeneous%20catalysis%20in%20continuous%20flow%20via%20incorporation%20onto%20polymer-based%20spherical%20activated%20carbon%20supports&rft.jtitle=Nanoscale&rft.au=Griffiths,%20Anthony&rft.date=2023-11-16&rft.volume=15&rft.issue=44&rft.spage=17910&rft.epage=17921&rft.pages=17910-17921&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr03634k&rft_dat=%3Cproquest_cross%3E2884182702%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-3c0afeba9fe16e709dd445b5448c2b04a04c02231d950202a301e89f293138b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890365528&rft_id=info:pmid/&rfr_iscdi=true |