Loading…

MOF-based heterogeneous catalysis in continuous flow via incorporation onto polymer-based spherical activated carbon supports

We present an approach to harnessing the tuneable catalytic properties of complex nanomaterials for continuous flow heterogeneous catalysis by combining them with the scalable and industrially implementable properties of carbon pelleted supports. This approach, in turn, will enable these catalytic m...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2023-11, Vol.15 (44), p.17910-17921
Main Authors: Griffiths, Anthony, Boyall, Sarah L., Müller, Pia, Harrington, John P., Sobolewska, Anna M., Reynolds, William R., Bourne, Richard A., Wu, Kejun, Collins, Sean M., Muldowney, Mark, Chamberlain, Thomas W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-3c0afeba9fe16e709dd445b5448c2b04a04c02231d950202a301e89f293138b83
cites cdi_FETCH-LOGICAL-c328t-3c0afeba9fe16e709dd445b5448c2b04a04c02231d950202a301e89f293138b83
container_end_page 17921
container_issue 44
container_start_page 17910
container_title Nanoscale
container_volume 15
creator Griffiths, Anthony
Boyall, Sarah L.
Müller, Pia
Harrington, John P.
Sobolewska, Anna M.
Reynolds, William R.
Bourne, Richard A.
Wu, Kejun
Collins, Sean M.
Muldowney, Mark
Chamberlain, Thomas W.
description We present an approach to harnessing the tuneable catalytic properties of complex nanomaterials for continuous flow heterogeneous catalysis by combining them with the scalable and industrially implementable properties of carbon pelleted supports. This approach, in turn, will enable these catalytic materials, which largely currently exist in forms unsuitable for this application ( e.g. powders), to be fully integrated into large scale, chemical processes. A composite heterogeneous catalyst consisting of a metal–organic framework-based Lewis acid, MIL-100(Sc), immobilised onto polymer-based spherical activated carbon (PBSAC) support has been developed. The material was characterised by focused ion beam-scanning electron microscopy-energy dispersive X-ray analysis, powder X-ray diffraction, N 2 adsorption, thermogravimetric analysis, atomic absorption spectroscopy, light scattering and crush testing with the catalytic activity studied in continuous flow. The mechanically robust spherical geometry makes the composite material ideal for application in packed-bed reactors. The catalyst was observed to operate without any loss in activity at steady state for 9 hours when utilised as a Lewis acid catalyst for the intramolecular cyclisation of (±)-citronellal as a model reaction. This work paves the way for further development into the exploitation of MOF-based continuous flow heterogeneous catalysis.
doi_str_mv 10.1039/d3nr03634k
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2884182702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884182702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-3c0afeba9fe16e709dd445b5448c2b04a04c02231d950202a301e89f293138b83</originalsourceid><addsrcrecordid>eNpdkU9LAzEQxRdRsFYvfoKAFxFWJ392mxylWhWrBdHzks1mbep2sybZSg9-d1NbPHia4fGbx8y8JDnFcImBiquKtg5oTtnHXjIgwCCldET2__qcHSZH3i8AchGxQfL9NJukpfS6QnMdtLPvutW290jJIJu1Nx6ZFinbBtP2G71u7BdaGRllZV1nnQzGtigCFnW2WS-12_n5bq6dUbJBUgWzkiFqSroy0r7v4mTwx8lBLRuvT3Z1mLxNbl_H9-l0dvcwvp6mihIeUqpA1rqUotY41yMQVcVYVmaMcUVKYBKYAkIorkQGBIikgDUXNREUU15yOkzOt76ds5-99qFYGq9008jfYwvCOcOcjIBE9OwfurC9a-N2kRLxt1lGNoYXW0o5673TddE5s5RuXWAoNkkUN_T55TeJR_oD2MZ9ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890365528</pqid></control><display><type>article</type><title>MOF-based heterogeneous catalysis in continuous flow via incorporation onto polymer-based spherical activated carbon supports</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Griffiths, Anthony ; Boyall, Sarah L. ; Müller, Pia ; Harrington, John P. ; Sobolewska, Anna M. ; Reynolds, William R. ; Bourne, Richard A. ; Wu, Kejun ; Collins, Sean M. ; Muldowney, Mark ; Chamberlain, Thomas W.</creator><creatorcontrib>Griffiths, Anthony ; Boyall, Sarah L. ; Müller, Pia ; Harrington, John P. ; Sobolewska, Anna M. ; Reynolds, William R. ; Bourne, Richard A. ; Wu, Kejun ; Collins, Sean M. ; Muldowney, Mark ; Chamberlain, Thomas W.</creatorcontrib><description>We present an approach to harnessing the tuneable catalytic properties of complex nanomaterials for continuous flow heterogeneous catalysis by combining them with the scalable and industrially implementable properties of carbon pelleted supports. This approach, in turn, will enable these catalytic materials, which largely currently exist in forms unsuitable for this application ( e.g. powders), to be fully integrated into large scale, chemical processes. A composite heterogeneous catalyst consisting of a metal–organic framework-based Lewis acid, MIL-100(Sc), immobilised onto polymer-based spherical activated carbon (PBSAC) support has been developed. The material was characterised by focused ion beam-scanning electron microscopy-energy dispersive X-ray analysis, powder X-ray diffraction, N 2 adsorption, thermogravimetric analysis, atomic absorption spectroscopy, light scattering and crush testing with the catalytic activity studied in continuous flow. The mechanically robust spherical geometry makes the composite material ideal for application in packed-bed reactors. The catalyst was observed to operate without any loss in activity at steady state for 9 hours when utilised as a Lewis acid catalyst for the intramolecular cyclisation of (±)-citronellal as a model reaction. This work paves the way for further development into the exploitation of MOF-based continuous flow heterogeneous catalysis.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr03634k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectroscopy ; Activated carbon ; Catalysis ; Catalysts ; Catalytic activity ; Chemical reactions ; Citronellal ; Composite materials ; Continuous flow ; Crush tests ; Energy dispersive X ray analysis ; Ion beams ; Lewis acid ; Metal-organic frameworks ; Nanomaterials ; Polymers ; Thermogravimetric analysis ; X ray analysis ; X ray powder diffraction</subject><ispartof>Nanoscale, 2023-11, Vol.15 (44), p.17910-17921</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-3c0afeba9fe16e709dd445b5448c2b04a04c02231d950202a301e89f293138b83</citedby><cites>FETCH-LOGICAL-c328t-3c0afeba9fe16e709dd445b5448c2b04a04c02231d950202a301e89f293138b83</cites><orcidid>0000-0001-5049-8335 ; 0000-0001-8100-6452 ; 0000-0001-7107-6297 ; 0000-0002-0100-5888 ; 0000-0002-5151-6360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Griffiths, Anthony</creatorcontrib><creatorcontrib>Boyall, Sarah L.</creatorcontrib><creatorcontrib>Müller, Pia</creatorcontrib><creatorcontrib>Harrington, John P.</creatorcontrib><creatorcontrib>Sobolewska, Anna M.</creatorcontrib><creatorcontrib>Reynolds, William R.</creatorcontrib><creatorcontrib>Bourne, Richard A.</creatorcontrib><creatorcontrib>Wu, Kejun</creatorcontrib><creatorcontrib>Collins, Sean M.</creatorcontrib><creatorcontrib>Muldowney, Mark</creatorcontrib><creatorcontrib>Chamberlain, Thomas W.</creatorcontrib><title>MOF-based heterogeneous catalysis in continuous flow via incorporation onto polymer-based spherical activated carbon supports</title><title>Nanoscale</title><description>We present an approach to harnessing the tuneable catalytic properties of complex nanomaterials for continuous flow heterogeneous catalysis by combining them with the scalable and industrially implementable properties of carbon pelleted supports. This approach, in turn, will enable these catalytic materials, which largely currently exist in forms unsuitable for this application ( e.g. powders), to be fully integrated into large scale, chemical processes. A composite heterogeneous catalyst consisting of a metal–organic framework-based Lewis acid, MIL-100(Sc), immobilised onto polymer-based spherical activated carbon (PBSAC) support has been developed. The material was characterised by focused ion beam-scanning electron microscopy-energy dispersive X-ray analysis, powder X-ray diffraction, N 2 adsorption, thermogravimetric analysis, atomic absorption spectroscopy, light scattering and crush testing with the catalytic activity studied in continuous flow. The mechanically robust spherical geometry makes the composite material ideal for application in packed-bed reactors. The catalyst was observed to operate without any loss in activity at steady state for 9 hours when utilised as a Lewis acid catalyst for the intramolecular cyclisation of (±)-citronellal as a model reaction. This work paves the way for further development into the exploitation of MOF-based continuous flow heterogeneous catalysis.</description><subject>Absorption spectroscopy</subject><subject>Activated carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reactions</subject><subject>Citronellal</subject><subject>Composite materials</subject><subject>Continuous flow</subject><subject>Crush tests</subject><subject>Energy dispersive X ray analysis</subject><subject>Ion beams</subject><subject>Lewis acid</subject><subject>Metal-organic frameworks</subject><subject>Nanomaterials</subject><subject>Polymers</subject><subject>Thermogravimetric analysis</subject><subject>X ray analysis</subject><subject>X ray powder diffraction</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU9LAzEQxRdRsFYvfoKAFxFWJ392mxylWhWrBdHzks1mbep2sybZSg9-d1NbPHia4fGbx8y8JDnFcImBiquKtg5oTtnHXjIgwCCldET2__qcHSZH3i8AchGxQfL9NJukpfS6QnMdtLPvutW290jJIJu1Nx6ZFinbBtP2G71u7BdaGRllZV1nnQzGtigCFnW2WS-12_n5bq6dUbJBUgWzkiFqSroy0r7v4mTwx8lBLRuvT3Z1mLxNbl_H9-l0dvcwvp6mihIeUqpA1rqUotY41yMQVcVYVmaMcUVKYBKYAkIorkQGBIikgDUXNREUU15yOkzOt76ds5-99qFYGq9008jfYwvCOcOcjIBE9OwfurC9a-N2kRLxt1lGNoYXW0o5673TddE5s5RuXWAoNkkUN_T55TeJR_oD2MZ9ag</recordid><startdate>20231116</startdate><enddate>20231116</enddate><creator>Griffiths, Anthony</creator><creator>Boyall, Sarah L.</creator><creator>Müller, Pia</creator><creator>Harrington, John P.</creator><creator>Sobolewska, Anna M.</creator><creator>Reynolds, William R.</creator><creator>Bourne, Richard A.</creator><creator>Wu, Kejun</creator><creator>Collins, Sean M.</creator><creator>Muldowney, Mark</creator><creator>Chamberlain, Thomas W.</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5049-8335</orcidid><orcidid>https://orcid.org/0000-0001-8100-6452</orcidid><orcidid>https://orcid.org/0000-0001-7107-6297</orcidid><orcidid>https://orcid.org/0000-0002-0100-5888</orcidid><orcidid>https://orcid.org/0000-0002-5151-6360</orcidid></search><sort><creationdate>20231116</creationdate><title>MOF-based heterogeneous catalysis in continuous flow via incorporation onto polymer-based spherical activated carbon supports</title><author>Griffiths, Anthony ; Boyall, Sarah L. ; Müller, Pia ; Harrington, John P. ; Sobolewska, Anna M. ; Reynolds, William R. ; Bourne, Richard A. ; Wu, Kejun ; Collins, Sean M. ; Muldowney, Mark ; Chamberlain, Thomas W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-3c0afeba9fe16e709dd445b5448c2b04a04c02231d950202a301e89f293138b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectroscopy</topic><topic>Activated carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reactions</topic><topic>Citronellal</topic><topic>Composite materials</topic><topic>Continuous flow</topic><topic>Crush tests</topic><topic>Energy dispersive X ray analysis</topic><topic>Ion beams</topic><topic>Lewis acid</topic><topic>Metal-organic frameworks</topic><topic>Nanomaterials</topic><topic>Polymers</topic><topic>Thermogravimetric analysis</topic><topic>X ray analysis</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griffiths, Anthony</creatorcontrib><creatorcontrib>Boyall, Sarah L.</creatorcontrib><creatorcontrib>Müller, Pia</creatorcontrib><creatorcontrib>Harrington, John P.</creatorcontrib><creatorcontrib>Sobolewska, Anna M.</creatorcontrib><creatorcontrib>Reynolds, William R.</creatorcontrib><creatorcontrib>Bourne, Richard A.</creatorcontrib><creatorcontrib>Wu, Kejun</creatorcontrib><creatorcontrib>Collins, Sean M.</creatorcontrib><creatorcontrib>Muldowney, Mark</creatorcontrib><creatorcontrib>Chamberlain, Thomas W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griffiths, Anthony</au><au>Boyall, Sarah L.</au><au>Müller, Pia</au><au>Harrington, John P.</au><au>Sobolewska, Anna M.</au><au>Reynolds, William R.</au><au>Bourne, Richard A.</au><au>Wu, Kejun</au><au>Collins, Sean M.</au><au>Muldowney, Mark</au><au>Chamberlain, Thomas W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOF-based heterogeneous catalysis in continuous flow via incorporation onto polymer-based spherical activated carbon supports</atitle><jtitle>Nanoscale</jtitle><date>2023-11-16</date><risdate>2023</risdate><volume>15</volume><issue>44</issue><spage>17910</spage><epage>17921</epage><pages>17910-17921</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>We present an approach to harnessing the tuneable catalytic properties of complex nanomaterials for continuous flow heterogeneous catalysis by combining them with the scalable and industrially implementable properties of carbon pelleted supports. This approach, in turn, will enable these catalytic materials, which largely currently exist in forms unsuitable for this application ( e.g. powders), to be fully integrated into large scale, chemical processes. A composite heterogeneous catalyst consisting of a metal–organic framework-based Lewis acid, MIL-100(Sc), immobilised onto polymer-based spherical activated carbon (PBSAC) support has been developed. The material was characterised by focused ion beam-scanning electron microscopy-energy dispersive X-ray analysis, powder X-ray diffraction, N 2 adsorption, thermogravimetric analysis, atomic absorption spectroscopy, light scattering and crush testing with the catalytic activity studied in continuous flow. The mechanically robust spherical geometry makes the composite material ideal for application in packed-bed reactors. The catalyst was observed to operate without any loss in activity at steady state for 9 hours when utilised as a Lewis acid catalyst for the intramolecular cyclisation of (±)-citronellal as a model reaction. This work paves the way for further development into the exploitation of MOF-based continuous flow heterogeneous catalysis.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3nr03634k</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5049-8335</orcidid><orcidid>https://orcid.org/0000-0001-8100-6452</orcidid><orcidid>https://orcid.org/0000-0001-7107-6297</orcidid><orcidid>https://orcid.org/0000-0002-0100-5888</orcidid><orcidid>https://orcid.org/0000-0002-5151-6360</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2023-11, Vol.15 (44), p.17910-17921
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2884182702
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Absorption spectroscopy
Activated carbon
Catalysis
Catalysts
Catalytic activity
Chemical reactions
Citronellal
Composite materials
Continuous flow
Crush tests
Energy dispersive X ray analysis
Ion beams
Lewis acid
Metal-organic frameworks
Nanomaterials
Polymers
Thermogravimetric analysis
X ray analysis
X ray powder diffraction
title MOF-based heterogeneous catalysis in continuous flow via incorporation onto polymer-based spherical activated carbon supports
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOF-based%20heterogeneous%20catalysis%20in%20continuous%20flow%20via%20incorporation%20onto%20polymer-based%20spherical%20activated%20carbon%20supports&rft.jtitle=Nanoscale&rft.au=Griffiths,%20Anthony&rft.date=2023-11-16&rft.volume=15&rft.issue=44&rft.spage=17910&rft.epage=17921&rft.pages=17910-17921&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr03634k&rft_dat=%3Cproquest_cross%3E2884182702%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-3c0afeba9fe16e709dd445b5448c2b04a04c02231d950202a301e89f293138b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890365528&rft_id=info:pmid/&rfr_iscdi=true