Loading…

Production of hybrid AgNPs - TEMPO-mediated oxidation cellulose composite from jackfruit peduncle agro-waste and its thermal management application in electronic devices

The urgent need for eco-friendly and cost-effective cellulose paper substrates in thermal management for biomedical electronic devices has driven the exploration of agro-waste materials. In this study, jackfruit peduncle waste was utilized as a precursor to produce a hybrid of AgNPs-tempo-mediated o...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2024-01, Vol.254 (Pt 1), p.127848-127848, Article 127848
Main Authors: Devarajan, M.M., Kumaraguruparan, G., Nagarajan, K.J., Vignesh, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The urgent need for eco-friendly and cost-effective cellulose paper substrates in thermal management for biomedical electronic devices has driven the exploration of agro-waste materials. In this study, jackfruit peduncle waste was utilized as a precursor to produce a hybrid of AgNPs-tempo-mediated oxidation cellulose strands (AgNPs-TOCS) through acid hydrolysis, TEMPO oxidation, and an in-situ generation process. The resulting hybrid AgNPs-TOCS composite exhibited a cylindrical cellulose structure with a diameter of 27.3 μm, on which spherical AgNPs with a diameter of 16.3 nm were embedded. This hybrid AgNPs-TOCS displayed an impressive inhibition zone diameter against E. coli bacteria (15.2 nm) and exhibited excellent thermal stability up to 269 °C. Furthermore, the AgNPs-TOCS composite paper substrate was fabricated using non-solvent techniques, and its mechanical, thermal, and electrical properties were investigated. This composite paper substrate exhibits good tensile strength (65 ± 2 MPa), in-plane thermal conductivity (5.8 ± 0.2 W/(m·K)), and electrical resistivity (0.0575 KΩ·m). These findings strongly suggest that this type of composite paper substrate holds promise for applications in thermal management within the field of biomedical electronics.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.127848