Loading…

Occurrence, multiphase partitioning, drivers, and ecological risks of current-use herbicides in a river basin dominated by rice–vegetable rotations in tropical China

Rice-vegetable rotation practices prevail in subtropical and tropical agriculture worldwide, with applications of current-use herbicides (CUHs) vital for nontarget plant control. After application, CUHs migrate to environmental compartments, where the occurrence, fate, and ecological risks have not...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2024-01, Vol.908, p.168270-168270, Article 168270
Main Authors: Tan, Huadong, Xing, Qiao, Mo, Ling, Wu, Chunyuan, Zhang, Xiaoying, He, Xiaoyu, Liang, Yuefu, Hao, Rong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rice-vegetable rotation practices prevail in subtropical and tropical agriculture worldwide, with applications of current-use herbicides (CUHs) vital for nontarget plant control. After application, CUHs migrate to environmental compartments, where the occurrence, fate, and ecological risks have not been well characterized. To further understand the occurrence and multiphase partitioning, as well as to evaluate potential drivers and mixture risks in environmental compartments, we analyzed 11 CUHs in 576 samples from 36 rice-vegetable rotations in Nandu River basin, Hainan, China. Samples included soil, water, suspended particulate matter, and sediment collected during both rice and vegetable planting periods. The CUH concentrations varied across environmental compartments, but with high levels of glyphosate and aminomethylphosphonic acid organophosphorus herbicides (OPHs) frequently detected, accounting for 82.3 % to 99.0 % in environmental compartments. Phenoxy acid (PAA) and chloroacetanilide (ANH) herbicides were detected at lower frequencies. Spatiotemporal variation was significantly different among OPHs, ANHs, and PAAs, with geographic and crop-related patterns most evident for CUHs rather than OPHs. Structural equation model, redundancy, and boosted regression tree analyses indicated environmental compartment properties (pH, organic matter, and Fe/Al oxides), crop type, and wet/dry climate were important drivers of spatiotemporal patterns. Fugacity ratios indicated multiphase partitioning and transport of CUHs differed in rice and vegetable planting periods. A new assessment framework based on species-sensitive distributions and environmental compartment weight index indicated unacceptable risks of CUHs (risk quotient >1 in >50 % of sites), with most risks from OPHs (10.5 % to 98.0 %) and butachlor, acetochlor, and 2,4-dichlorophenoxyacetic acid. Risk hot spots were identified as the soil, the central region, and the vegetable planting period, potentially threatening nontarget organisms (e.g., Lemna minor, Glomus intraradices, and Apis mellifera). This study provides a new risk assessment framework and demonstrates the domination of OPHs in CUH contamination and risks in the tropics, thus helping guide policymakers and stakeholders on herbicide management.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.168270