Loading…

Adjusted Residuals for Evaluating Conditional Independence in IRT Models for Multistage Adaptive Testing

The key assumption of conditional independence of item responses given latent ability in item response theory (IRT) models is addressed for multistage adaptive testing (MST) designs. Routing decisions in MST designs can cause patterns in the data that are not accounted for by the IRT model. This phe...

Full description

Saved in:
Bibliographic Details
Published in:Psychometrika 2024-03, Vol.89 (1), p.317-346
Main Authors: van Rijn, Peter W., Ali, Usama S., Shin, Hyo Jeong, Joo, Sean-Hwane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c326t-6edef9e0c6cdf545d7284b2af751a98fb60084b00416c237bd472c9078b4654f3
container_end_page 346
container_issue 1
container_start_page 317
container_title Psychometrika
container_volume 89
creator van Rijn, Peter W.
Ali, Usama S.
Shin, Hyo Jeong
Joo, Sean-Hwane
description The key assumption of conditional independence of item responses given latent ability in item response theory (IRT) models is addressed for multistage adaptive testing (MST) designs. Routing decisions in MST designs can cause patterns in the data that are not accounted for by the IRT model. This phenomenon relates to quasi-independence in log-linear models for incomplete contingency tables and impacts certain types of statistical inference based on assumptions on observed and missing data. We demonstrate that generalized residuals for item pair frequencies under IRT models as discussed by Haberman and Sinharay (J Am Stat Assoc 108:1435–1444, 2013. https://doi.org/10.1080/01621459.2013.835660 ) are inappropriate for MST data without adjustments. The adjustments are dependent on the MST design, and can quickly become nontrivial as the complexity of the routing increases. However, the adjusted residuals are found to have satisfactory Type I errors in a simulation and illustrated by an application to real MST data from the Programme for International Student Assessment (PISA). Implications and suggestions for statistical inference with MST designs are discussed.
doi_str_mv 10.1007/s11336-023-09935-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2886596730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886596730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-6edef9e0c6cdf545d7284b2af751a98fb60084b00416c237bd472c9078b4654f3</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EounHH-CALHHhsjD-to9RVGikVpWqcLa869ngaLMb1ruV-Pc4JIDEoRdbHj_vO5p5CXnH4BMDMJ8zY0LoCriowDmhKvmKLJjVUJ4WXpMFgBCVYFxckMucdwDgmLVvyYUwToBSdkG-L-NuzhNG-oQ5xTl0mbbDSG-fQzeHKfVbuhr6mKY09KGj6z7iAcvRN0hTT9dPG_owRDyrHuZuSnkKW6TLGA5Teka6wXy0uSZv2mKON-f7inz7crtZ3VX3j1_Xq-V91Qiup0pjxNYhNLqJrZIqGm5lzUNrFAvOtrUGKAUAyXTDhamjNLxxYGwttZKtuCIfT76Hcfgxl95-n3KDXRd6HObsubVaOW0EFPTDf-humMcyZvYCpFPMOnOk-IlqxiHnEVt_GNM-jD89A3_MwZ9y8CUH_zsHL4vo_dl6rvcY_0r-LL4A4gTk8tVvcfzX-wXbX4T0ksc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049518970</pqid></control><display><type>article</type><title>Adjusted Residuals for Evaluating Conditional Independence in IRT Models for Multistage Adaptive Testing</title><source>Springer Nature</source><creator>van Rijn, Peter W. ; Ali, Usama S. ; Shin, Hyo Jeong ; Joo, Sean-Hwane</creator><creatorcontrib>van Rijn, Peter W. ; Ali, Usama S. ; Shin, Hyo Jeong ; Joo, Sean-Hwane</creatorcontrib><description>The key assumption of conditional independence of item responses given latent ability in item response theory (IRT) models is addressed for multistage adaptive testing (MST) designs. Routing decisions in MST designs can cause patterns in the data that are not accounted for by the IRT model. This phenomenon relates to quasi-independence in log-linear models for incomplete contingency tables and impacts certain types of statistical inference based on assumptions on observed and missing data. We demonstrate that generalized residuals for item pair frequencies under IRT models as discussed by Haberman and Sinharay (J Am Stat Assoc 108:1435–1444, 2013. https://doi.org/10.1080/01621459.2013.835660 ) are inappropriate for MST data without adjustments. The adjustments are dependent on the MST design, and can quickly become nontrivial as the complexity of the routing increases. However, the adjusted residuals are found to have satisfactory Type I errors in a simulation and illustrated by an application to real MST data from the Programme for International Student Assessment (PISA). Implications and suggestions for statistical inference with MST designs are discussed.</description><identifier>ISSN: 0033-3123</identifier><identifier>ISSN: 1860-0980</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-023-09935-4</identifier><identifier>PMID: 37930558</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive Testing ; Assessment ; Behavioral Science and Psychology ; Computer Simulation ; Educational Measurement - methods ; Humanities ; Humans ; Item Response Theory ; Law ; Models, Statistical ; Psychology ; Psychometrics ; Psychometrics - methods ; Statistical analysis ; Statistical inference ; Statistical Theory and Methods ; Statistics ; Statistics for Social Sciences ; Testing and Evaluation ; Theory and Methods</subject><ispartof>Psychometrika, 2024-03, Vol.89 (1), p.317-346</ispartof><rights>The Author(s) under exclusive licence to The Psychometric Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s) under exclusive licence to The Psychometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-6edef9e0c6cdf545d7284b2af751a98fb60084b00416c237bd472c9078b4654f3</cites><orcidid>0000-0002-4865-9723 ; 0000-0002-2660-6049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37930558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Rijn, Peter W.</creatorcontrib><creatorcontrib>Ali, Usama S.</creatorcontrib><creatorcontrib>Shin, Hyo Jeong</creatorcontrib><creatorcontrib>Joo, Sean-Hwane</creatorcontrib><title>Adjusted Residuals for Evaluating Conditional Independence in IRT Models for Multistage Adaptive Testing</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><addtitle>Psychometrika</addtitle><description>The key assumption of conditional independence of item responses given latent ability in item response theory (IRT) models is addressed for multistage adaptive testing (MST) designs. Routing decisions in MST designs can cause patterns in the data that are not accounted for by the IRT model. This phenomenon relates to quasi-independence in log-linear models for incomplete contingency tables and impacts certain types of statistical inference based on assumptions on observed and missing data. We demonstrate that generalized residuals for item pair frequencies under IRT models as discussed by Haberman and Sinharay (J Am Stat Assoc 108:1435–1444, 2013. https://doi.org/10.1080/01621459.2013.835660 ) are inappropriate for MST data without adjustments. The adjustments are dependent on the MST design, and can quickly become nontrivial as the complexity of the routing increases. However, the adjusted residuals are found to have satisfactory Type I errors in a simulation and illustrated by an application to real MST data from the Programme for International Student Assessment (PISA). Implications and suggestions for statistical inference with MST designs are discussed.</description><subject>Adaptive Testing</subject><subject>Assessment</subject><subject>Behavioral Science and Psychology</subject><subject>Computer Simulation</subject><subject>Educational Measurement - methods</subject><subject>Humanities</subject><subject>Humans</subject><subject>Item Response Theory</subject><subject>Law</subject><subject>Models, Statistical</subject><subject>Psychology</subject><subject>Psychometrics</subject><subject>Psychometrics - methods</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Social Sciences</subject><subject>Testing and Evaluation</subject><subject>Theory and Methods</subject><issn>0033-3123</issn><issn>1860-0980</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vEzEQhi0EounHH-CALHHhsjD-to9RVGikVpWqcLa869ngaLMb1ruV-Pc4JIDEoRdbHj_vO5p5CXnH4BMDMJ8zY0LoCriowDmhKvmKLJjVUJ4WXpMFgBCVYFxckMucdwDgmLVvyYUwToBSdkG-L-NuzhNG-oQ5xTl0mbbDSG-fQzeHKfVbuhr6mKY09KGj6z7iAcvRN0hTT9dPG_owRDyrHuZuSnkKW6TLGA5Teka6wXy0uSZv2mKON-f7inz7crtZ3VX3j1_Xq-V91Qiup0pjxNYhNLqJrZIqGm5lzUNrFAvOtrUGKAUAyXTDhamjNLxxYGwttZKtuCIfT76Hcfgxl95-n3KDXRd6HObsubVaOW0EFPTDf-humMcyZvYCpFPMOnOk-IlqxiHnEVt_GNM-jD89A3_MwZ9y8CUH_zsHL4vo_dl6rvcY_0r-LL4A4gTk8tVvcfzX-wXbX4T0ksc</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>van Rijn, Peter W.</creator><creator>Ali, Usama S.</creator><creator>Shin, Hyo Jeong</creator><creator>Joo, Sean-Hwane</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4865-9723</orcidid><orcidid>https://orcid.org/0000-0002-2660-6049</orcidid></search><sort><creationdate>20240301</creationdate><title>Adjusted Residuals for Evaluating Conditional Independence in IRT Models for Multistage Adaptive Testing</title><author>van Rijn, Peter W. ; Ali, Usama S. ; Shin, Hyo Jeong ; Joo, Sean-Hwane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-6edef9e0c6cdf545d7284b2af751a98fb60084b00416c237bd472c9078b4654f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive Testing</topic><topic>Assessment</topic><topic>Behavioral Science and Psychology</topic><topic>Computer Simulation</topic><topic>Educational Measurement - methods</topic><topic>Humanities</topic><topic>Humans</topic><topic>Item Response Theory</topic><topic>Law</topic><topic>Models, Statistical</topic><topic>Psychology</topic><topic>Psychometrics</topic><topic>Psychometrics - methods</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Social Sciences</topic><topic>Testing and Evaluation</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Rijn, Peter W.</creatorcontrib><creatorcontrib>Ali, Usama S.</creatorcontrib><creatorcontrib>Shin, Hyo Jeong</creatorcontrib><creatorcontrib>Joo, Sean-Hwane</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Rijn, Peter W.</au><au>Ali, Usama S.</au><au>Shin, Hyo Jeong</au><au>Joo, Sean-Hwane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjusted Residuals for Evaluating Conditional Independence in IRT Models for Multistage Adaptive Testing</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><addtitle>Psychometrika</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>89</volume><issue>1</issue><spage>317</spage><epage>346</epage><pages>317-346</pages><issn>0033-3123</issn><issn>1860-0980</issn><eissn>1860-0980</eissn><abstract>The key assumption of conditional independence of item responses given latent ability in item response theory (IRT) models is addressed for multistage adaptive testing (MST) designs. Routing decisions in MST designs can cause patterns in the data that are not accounted for by the IRT model. This phenomenon relates to quasi-independence in log-linear models for incomplete contingency tables and impacts certain types of statistical inference based on assumptions on observed and missing data. We demonstrate that generalized residuals for item pair frequencies under IRT models as discussed by Haberman and Sinharay (J Am Stat Assoc 108:1435–1444, 2013. https://doi.org/10.1080/01621459.2013.835660 ) are inappropriate for MST data without adjustments. The adjustments are dependent on the MST design, and can quickly become nontrivial as the complexity of the routing increases. However, the adjusted residuals are found to have satisfactory Type I errors in a simulation and illustrated by an application to real MST data from the Programme for International Student Assessment (PISA). Implications and suggestions for statistical inference with MST designs are discussed.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37930558</pmid><doi>10.1007/s11336-023-09935-4</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-4865-9723</orcidid><orcidid>https://orcid.org/0000-0002-2660-6049</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0033-3123
ispartof Psychometrika, 2024-03, Vol.89 (1), p.317-346
issn 0033-3123
1860-0980
1860-0980
language eng
recordid cdi_proquest_miscellaneous_2886596730
source Springer Nature
subjects Adaptive Testing
Assessment
Behavioral Science and Psychology
Computer Simulation
Educational Measurement - methods
Humanities
Humans
Item Response Theory
Law
Models, Statistical
Psychology
Psychometrics
Psychometrics - methods
Statistical analysis
Statistical inference
Statistical Theory and Methods
Statistics
Statistics for Social Sciences
Testing and Evaluation
Theory and Methods
title Adjusted Residuals for Evaluating Conditional Independence in IRT Models for Multistage Adaptive Testing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjusted%20Residuals%20for%20Evaluating%20Conditional%20Independence%20in%20IRT%20Models%20for%20Multistage%20Adaptive%20Testing&rft.jtitle=Psychometrika&rft.au=van%20Rijn,%20Peter%20W.&rft.date=2024-03-01&rft.volume=89&rft.issue=1&rft.spage=317&rft.epage=346&rft.pages=317-346&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/s11336-023-09935-4&rft_dat=%3Cproquest_cross%3E2886596730%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-6edef9e0c6cdf545d7284b2af751a98fb60084b00416c237bd472c9078b4654f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3049518970&rft_id=info:pmid/37930558&rfr_iscdi=true