Loading…
Adjusted Residuals for Evaluating Conditional Independence in IRT Models for Multistage Adaptive Testing
The key assumption of conditional independence of item responses given latent ability in item response theory (IRT) models is addressed for multistage adaptive testing (MST) designs. Routing decisions in MST designs can cause patterns in the data that are not accounted for by the IRT model. This phe...
Saved in:
Published in: | Psychometrika 2024-03, Vol.89 (1), p.317-346 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-6edef9e0c6cdf545d7284b2af751a98fb60084b00416c237bd472c9078b4654f3 |
container_end_page | 346 |
container_issue | 1 |
container_start_page | 317 |
container_title | Psychometrika |
container_volume | 89 |
creator | van Rijn, Peter W. Ali, Usama S. Shin, Hyo Jeong Joo, Sean-Hwane |
description | The key assumption of conditional independence of item responses given latent ability in item response theory (IRT) models is addressed for multistage adaptive testing (MST) designs. Routing decisions in MST designs can cause patterns in the data that are not accounted for by the IRT model. This phenomenon relates to quasi-independence in log-linear models for incomplete contingency tables and impacts certain types of statistical inference based on assumptions on observed and missing data. We demonstrate that generalized residuals for item pair frequencies under IRT models as discussed by Haberman and Sinharay (J Am Stat Assoc 108:1435–1444, 2013.
https://doi.org/10.1080/01621459.2013.835660
) are inappropriate for MST data without adjustments. The adjustments are dependent on the MST design, and can quickly become nontrivial as the complexity of the routing increases. However, the adjusted residuals are found to have satisfactory Type I errors in a simulation and illustrated by an application to real MST data from the Programme for International Student Assessment (PISA). Implications and suggestions for statistical inference with MST designs are discussed. |
doi_str_mv | 10.1007/s11336-023-09935-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2886596730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886596730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-6edef9e0c6cdf545d7284b2af751a98fb60084b00416c237bd472c9078b4654f3</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EounHH-CALHHhsjD-to9RVGikVpWqcLa869ngaLMb1ruV-Pc4JIDEoRdbHj_vO5p5CXnH4BMDMJ8zY0LoCriowDmhKvmKLJjVUJ4WXpMFgBCVYFxckMucdwDgmLVvyYUwToBSdkG-L-NuzhNG-oQ5xTl0mbbDSG-fQzeHKfVbuhr6mKY09KGj6z7iAcvRN0hTT9dPG_owRDyrHuZuSnkKW6TLGA5Teka6wXy0uSZv2mKON-f7inz7crtZ3VX3j1_Xq-V91Qiup0pjxNYhNLqJrZIqGm5lzUNrFAvOtrUGKAUAyXTDhamjNLxxYGwttZKtuCIfT76Hcfgxl95-n3KDXRd6HObsubVaOW0EFPTDf-humMcyZvYCpFPMOnOk-IlqxiHnEVt_GNM-jD89A3_MwZ9y8CUH_zsHL4vo_dl6rvcY_0r-LL4A4gTk8tVvcfzX-wXbX4T0ksc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049518970</pqid></control><display><type>article</type><title>Adjusted Residuals for Evaluating Conditional Independence in IRT Models for Multistage Adaptive Testing</title><source>Springer Nature</source><creator>van Rijn, Peter W. ; Ali, Usama S. ; Shin, Hyo Jeong ; Joo, Sean-Hwane</creator><creatorcontrib>van Rijn, Peter W. ; Ali, Usama S. ; Shin, Hyo Jeong ; Joo, Sean-Hwane</creatorcontrib><description>The key assumption of conditional independence of item responses given latent ability in item response theory (IRT) models is addressed for multistage adaptive testing (MST) designs. Routing decisions in MST designs can cause patterns in the data that are not accounted for by the IRT model. This phenomenon relates to quasi-independence in log-linear models for incomplete contingency tables and impacts certain types of statistical inference based on assumptions on observed and missing data. We demonstrate that generalized residuals for item pair frequencies under IRT models as discussed by Haberman and Sinharay (J Am Stat Assoc 108:1435–1444, 2013.
https://doi.org/10.1080/01621459.2013.835660
) are inappropriate for MST data without adjustments. The adjustments are dependent on the MST design, and can quickly become nontrivial as the complexity of the routing increases. However, the adjusted residuals are found to have satisfactory Type I errors in a simulation and illustrated by an application to real MST data from the Programme for International Student Assessment (PISA). Implications and suggestions for statistical inference with MST designs are discussed.</description><identifier>ISSN: 0033-3123</identifier><identifier>ISSN: 1860-0980</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-023-09935-4</identifier><identifier>PMID: 37930558</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive Testing ; Assessment ; Behavioral Science and Psychology ; Computer Simulation ; Educational Measurement - methods ; Humanities ; Humans ; Item Response Theory ; Law ; Models, Statistical ; Psychology ; Psychometrics ; Psychometrics - methods ; Statistical analysis ; Statistical inference ; Statistical Theory and Methods ; Statistics ; Statistics for Social Sciences ; Testing and Evaluation ; Theory and Methods</subject><ispartof>Psychometrika, 2024-03, Vol.89 (1), p.317-346</ispartof><rights>The Author(s) under exclusive licence to The Psychometric Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s) under exclusive licence to The Psychometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-6edef9e0c6cdf545d7284b2af751a98fb60084b00416c237bd472c9078b4654f3</cites><orcidid>0000-0002-4865-9723 ; 0000-0002-2660-6049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37930558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Rijn, Peter W.</creatorcontrib><creatorcontrib>Ali, Usama S.</creatorcontrib><creatorcontrib>Shin, Hyo Jeong</creatorcontrib><creatorcontrib>Joo, Sean-Hwane</creatorcontrib><title>Adjusted Residuals for Evaluating Conditional Independence in IRT Models for Multistage Adaptive Testing</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><addtitle>Psychometrika</addtitle><description>The key assumption of conditional independence of item responses given latent ability in item response theory (IRT) models is addressed for multistage adaptive testing (MST) designs. Routing decisions in MST designs can cause patterns in the data that are not accounted for by the IRT model. This phenomenon relates to quasi-independence in log-linear models for incomplete contingency tables and impacts certain types of statistical inference based on assumptions on observed and missing data. We demonstrate that generalized residuals for item pair frequencies under IRT models as discussed by Haberman and Sinharay (J Am Stat Assoc 108:1435–1444, 2013.
https://doi.org/10.1080/01621459.2013.835660
) are inappropriate for MST data without adjustments. The adjustments are dependent on the MST design, and can quickly become nontrivial as the complexity of the routing increases. However, the adjusted residuals are found to have satisfactory Type I errors in a simulation and illustrated by an application to real MST data from the Programme for International Student Assessment (PISA). Implications and suggestions for statistical inference with MST designs are discussed.</description><subject>Adaptive Testing</subject><subject>Assessment</subject><subject>Behavioral Science and Psychology</subject><subject>Computer Simulation</subject><subject>Educational Measurement - methods</subject><subject>Humanities</subject><subject>Humans</subject><subject>Item Response Theory</subject><subject>Law</subject><subject>Models, Statistical</subject><subject>Psychology</subject><subject>Psychometrics</subject><subject>Psychometrics - methods</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Social Sciences</subject><subject>Testing and Evaluation</subject><subject>Theory and Methods</subject><issn>0033-3123</issn><issn>1860-0980</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vEzEQhi0EounHH-CALHHhsjD-to9RVGikVpWqcLa869ngaLMb1ruV-Pc4JIDEoRdbHj_vO5p5CXnH4BMDMJ8zY0LoCriowDmhKvmKLJjVUJ4WXpMFgBCVYFxckMucdwDgmLVvyYUwToBSdkG-L-NuzhNG-oQ5xTl0mbbDSG-fQzeHKfVbuhr6mKY09KGj6z7iAcvRN0hTT9dPG_owRDyrHuZuSnkKW6TLGA5Teka6wXy0uSZv2mKON-f7inz7crtZ3VX3j1_Xq-V91Qiup0pjxNYhNLqJrZIqGm5lzUNrFAvOtrUGKAUAyXTDhamjNLxxYGwttZKtuCIfT76Hcfgxl95-n3KDXRd6HObsubVaOW0EFPTDf-humMcyZvYCpFPMOnOk-IlqxiHnEVt_GNM-jD89A3_MwZ9y8CUH_zsHL4vo_dl6rvcY_0r-LL4A4gTk8tVvcfzX-wXbX4T0ksc</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>van Rijn, Peter W.</creator><creator>Ali, Usama S.</creator><creator>Shin, Hyo Jeong</creator><creator>Joo, Sean-Hwane</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4865-9723</orcidid><orcidid>https://orcid.org/0000-0002-2660-6049</orcidid></search><sort><creationdate>20240301</creationdate><title>Adjusted Residuals for Evaluating Conditional Independence in IRT Models for Multistage Adaptive Testing</title><author>van Rijn, Peter W. ; Ali, Usama S. ; Shin, Hyo Jeong ; Joo, Sean-Hwane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-6edef9e0c6cdf545d7284b2af751a98fb60084b00416c237bd472c9078b4654f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive Testing</topic><topic>Assessment</topic><topic>Behavioral Science and Psychology</topic><topic>Computer Simulation</topic><topic>Educational Measurement - methods</topic><topic>Humanities</topic><topic>Humans</topic><topic>Item Response Theory</topic><topic>Law</topic><topic>Models, Statistical</topic><topic>Psychology</topic><topic>Psychometrics</topic><topic>Psychometrics - methods</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Social Sciences</topic><topic>Testing and Evaluation</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Rijn, Peter W.</creatorcontrib><creatorcontrib>Ali, Usama S.</creatorcontrib><creatorcontrib>Shin, Hyo Jeong</creatorcontrib><creatorcontrib>Joo, Sean-Hwane</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Rijn, Peter W.</au><au>Ali, Usama S.</au><au>Shin, Hyo Jeong</au><au>Joo, Sean-Hwane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjusted Residuals for Evaluating Conditional Independence in IRT Models for Multistage Adaptive Testing</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><addtitle>Psychometrika</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>89</volume><issue>1</issue><spage>317</spage><epage>346</epage><pages>317-346</pages><issn>0033-3123</issn><issn>1860-0980</issn><eissn>1860-0980</eissn><abstract>The key assumption of conditional independence of item responses given latent ability in item response theory (IRT) models is addressed for multistage adaptive testing (MST) designs. Routing decisions in MST designs can cause patterns in the data that are not accounted for by the IRT model. This phenomenon relates to quasi-independence in log-linear models for incomplete contingency tables and impacts certain types of statistical inference based on assumptions on observed and missing data. We demonstrate that generalized residuals for item pair frequencies under IRT models as discussed by Haberman and Sinharay (J Am Stat Assoc 108:1435–1444, 2013.
https://doi.org/10.1080/01621459.2013.835660
) are inappropriate for MST data without adjustments. The adjustments are dependent on the MST design, and can quickly become nontrivial as the complexity of the routing increases. However, the adjusted residuals are found to have satisfactory Type I errors in a simulation and illustrated by an application to real MST data from the Programme for International Student Assessment (PISA). Implications and suggestions for statistical inference with MST designs are discussed.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37930558</pmid><doi>10.1007/s11336-023-09935-4</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-4865-9723</orcidid><orcidid>https://orcid.org/0000-0002-2660-6049</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-3123 |
ispartof | Psychometrika, 2024-03, Vol.89 (1), p.317-346 |
issn | 0033-3123 1860-0980 1860-0980 |
language | eng |
recordid | cdi_proquest_miscellaneous_2886596730 |
source | Springer Nature |
subjects | Adaptive Testing Assessment Behavioral Science and Psychology Computer Simulation Educational Measurement - methods Humanities Humans Item Response Theory Law Models, Statistical Psychology Psychometrics Psychometrics - methods Statistical analysis Statistical inference Statistical Theory and Methods Statistics Statistics for Social Sciences Testing and Evaluation Theory and Methods |
title | Adjusted Residuals for Evaluating Conditional Independence in IRT Models for Multistage Adaptive Testing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjusted%20Residuals%20for%20Evaluating%20Conditional%20Independence%20in%20IRT%20Models%20for%20Multistage%20Adaptive%20Testing&rft.jtitle=Psychometrika&rft.au=van%20Rijn,%20Peter%20W.&rft.date=2024-03-01&rft.volume=89&rft.issue=1&rft.spage=317&rft.epage=346&rft.pages=317-346&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/s11336-023-09935-4&rft_dat=%3Cproquest_cross%3E2886596730%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-6edef9e0c6cdf545d7284b2af751a98fb60084b00416c237bd472c9078b4654f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3049518970&rft_id=info:pmid/37930558&rfr_iscdi=true |