Loading…

Rapid, label-free classification of glioblastoma differentiation status combining confocal Raman spectroscopy and machine learning

Label-free identification of tumor cells using spectroscopic assays has emerged as a technological innovation with a proven ability for rapid implementation in clinical care. Machine learning facilitates the optimization of processing and interpretation of extensive data, such as various spectroscop...

Full description

Saved in:
Bibliographic Details
Published in:Analyst (London) 2023-11, Vol.148 (23), p.619-6119
Main Authors: Wurm, Lennard M, Fischer, Björn, Neuschmelting, Volker, Reinecke, David, Fischer, Igor, Croner, Roland S, Goldbrunner, Roland, Hacker, Michael C, Dyba, Jakub, Kahlert, Ulf D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-842b3c90d088fb258287e43ca5685a2314ef95442b668bfd5b22536bbd2417923
cites cdi_FETCH-LOGICAL-c350t-842b3c90d088fb258287e43ca5685a2314ef95442b668bfd5b22536bbd2417923
container_end_page 6119
container_issue 23
container_start_page 619
container_title Analyst (London)
container_volume 148
creator Wurm, Lennard M
Fischer, Björn
Neuschmelting, Volker
Reinecke, David
Fischer, Igor
Croner, Roland S
Goldbrunner, Roland
Hacker, Michael C
Dyba, Jakub
Kahlert, Ulf D
description Label-free identification of tumor cells using spectroscopic assays has emerged as a technological innovation with a proven ability for rapid implementation in clinical care. Machine learning facilitates the optimization of processing and interpretation of extensive data, such as various spectroscopy data obtained from surgical samples. The here-described preclinical work investigates the potential of machine learning algorithms combining confocal Raman spectroscopy to distinguish non-differentiated glioblastoma cells and their respective isogenic differentiated phenotype by means of confocal ultra-rapid measurements. For this purpose, we measured and correlated modalities of 1146 intracellular single-point measurements and sustainingly clustered cell components to predict tumor stem cell existence. By further narrowing a few selected peaks, we found indicative evidence that using our computational imaging technology is a powerful approach to detect tumor stem cells in vitro with an accuracy of 91.7% in distinct cell compartments, mainly because of greater lipid content and putative different protein structures. We also demonstrate that the presented technology can overcome intra- and intertumoral cellular heterogeneity of our disease models, verifying the elevated physiological relevance of our applied disease modeling technology despite intracellular noise limitations for future translational evaluation. Multifactor classification of tumor stem cells and their differentiated counterparts by label-free diagnostics.
doi_str_mv 10.1039/d3an01303k
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2886600156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891743442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-842b3c90d088fb258287e43ca5685a2314ef95442b668bfd5b22536bbd2417923</originalsourceid><addsrcrecordid>eNpd0ctLHDEcB_BQFLpdvXgvBHop4mgek2zmKL5RLCx6Hn7JJDY2k0yT2YPX_uXGrrTgKY_fJ88vQgeUHFPCu5OBQySUE_7rE1pQLttGCKZ20IIQwhsmRfsZfSnluQ4pEWSB_qxh8sMRDqBtaFy2FpsApXjnDcw-RZwcfgo-6To7pxHw4J2z2cbZb-tlhnlTsEmj9tHHp9qLLhkIeA0j1PpkzZxTMWl6wRAHPIL56aPFwUJ-W7CHdh2EYvff2yV6vLx4OLtu7n5c3Zyd3jWGCzI3qmWam44MRCmnmVBMrWzLDQipBDBOW-s60VYlpdJuEJoxwaXWA2vpqmN8ib5v951y-r2xZe5HX4wNAaJNm9IzpaSs_yJkpd8-0Oe0ybHerqqOrlpez6nqcKtMfV7J1vVT9iPkl56S_i2O_pyf3v-N47bir1uci_nn_sfFXwElkogd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891743442</pqid></control><display><type>article</type><title>Rapid, label-free classification of glioblastoma differentiation status combining confocal Raman spectroscopy and machine learning</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Wurm, Lennard M ; Fischer, Björn ; Neuschmelting, Volker ; Reinecke, David ; Fischer, Igor ; Croner, Roland S ; Goldbrunner, Roland ; Hacker, Michael C ; Dyba, Jakub ; Kahlert, Ulf D</creator><creatorcontrib>Wurm, Lennard M ; Fischer, Björn ; Neuschmelting, Volker ; Reinecke, David ; Fischer, Igor ; Croner, Roland S ; Goldbrunner, Roland ; Hacker, Michael C ; Dyba, Jakub ; Kahlert, Ulf D</creatorcontrib><description>Label-free identification of tumor cells using spectroscopic assays has emerged as a technological innovation with a proven ability for rapid implementation in clinical care. Machine learning facilitates the optimization of processing and interpretation of extensive data, such as various spectroscopy data obtained from surgical samples. The here-described preclinical work investigates the potential of machine learning algorithms combining confocal Raman spectroscopy to distinguish non-differentiated glioblastoma cells and their respective isogenic differentiated phenotype by means of confocal ultra-rapid measurements. For this purpose, we measured and correlated modalities of 1146 intracellular single-point measurements and sustainingly clustered cell components to predict tumor stem cell existence. By further narrowing a few selected peaks, we found indicative evidence that using our computational imaging technology is a powerful approach to detect tumor stem cells in vitro with an accuracy of 91.7% in distinct cell compartments, mainly because of greater lipid content and putative different protein structures. We also demonstrate that the presented technology can overcome intra- and intertumoral cellular heterogeneity of our disease models, verifying the elevated physiological relevance of our applied disease modeling technology despite intracellular noise limitations for future translational evaluation. Multifactor classification of tumor stem cells and their differentiated counterparts by label-free diagnostics.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/d3an01303k</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Algorithms ; Heterogeneity ; Labels ; Lipids ; Machine learning ; Raman spectroscopy ; Spectrum analysis ; Stem cells ; Tumors</subject><ispartof>Analyst (London), 2023-11, Vol.148 (23), p.619-6119</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-842b3c90d088fb258287e43ca5685a2314ef95442b668bfd5b22536bbd2417923</citedby><cites>FETCH-LOGICAL-c350t-842b3c90d088fb258287e43ca5685a2314ef95442b668bfd5b22536bbd2417923</cites><orcidid>0000-0003-2202-5068 ; 0000-0002-6021-1841 ; 0000-0002-3298-9517 ; 0009-0009-2111-4780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wurm, Lennard M</creatorcontrib><creatorcontrib>Fischer, Björn</creatorcontrib><creatorcontrib>Neuschmelting, Volker</creatorcontrib><creatorcontrib>Reinecke, David</creatorcontrib><creatorcontrib>Fischer, Igor</creatorcontrib><creatorcontrib>Croner, Roland S</creatorcontrib><creatorcontrib>Goldbrunner, Roland</creatorcontrib><creatorcontrib>Hacker, Michael C</creatorcontrib><creatorcontrib>Dyba, Jakub</creatorcontrib><creatorcontrib>Kahlert, Ulf D</creatorcontrib><title>Rapid, label-free classification of glioblastoma differentiation status combining confocal Raman spectroscopy and machine learning</title><title>Analyst (London)</title><description>Label-free identification of tumor cells using spectroscopic assays has emerged as a technological innovation with a proven ability for rapid implementation in clinical care. Machine learning facilitates the optimization of processing and interpretation of extensive data, such as various spectroscopy data obtained from surgical samples. The here-described preclinical work investigates the potential of machine learning algorithms combining confocal Raman spectroscopy to distinguish non-differentiated glioblastoma cells and their respective isogenic differentiated phenotype by means of confocal ultra-rapid measurements. For this purpose, we measured and correlated modalities of 1146 intracellular single-point measurements and sustainingly clustered cell components to predict tumor stem cell existence. By further narrowing a few selected peaks, we found indicative evidence that using our computational imaging technology is a powerful approach to detect tumor stem cells in vitro with an accuracy of 91.7% in distinct cell compartments, mainly because of greater lipid content and putative different protein structures. We also demonstrate that the presented technology can overcome intra- and intertumoral cellular heterogeneity of our disease models, verifying the elevated physiological relevance of our applied disease modeling technology despite intracellular noise limitations for future translational evaluation. Multifactor classification of tumor stem cells and their differentiated counterparts by label-free diagnostics.</description><subject>Algorithms</subject><subject>Heterogeneity</subject><subject>Labels</subject><subject>Lipids</subject><subject>Machine learning</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stem cells</subject><subject>Tumors</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0ctLHDEcB_BQFLpdvXgvBHop4mgek2zmKL5RLCx6Hn7JJDY2k0yT2YPX_uXGrrTgKY_fJ88vQgeUHFPCu5OBQySUE_7rE1pQLttGCKZ20IIQwhsmRfsZfSnluQ4pEWSB_qxh8sMRDqBtaFy2FpsApXjnDcw-RZwcfgo-6To7pxHw4J2z2cbZb-tlhnlTsEmj9tHHp9qLLhkIeA0j1PpkzZxTMWl6wRAHPIL56aPFwUJ-W7CHdh2EYvff2yV6vLx4OLtu7n5c3Zyd3jWGCzI3qmWam44MRCmnmVBMrWzLDQipBDBOW-s60VYlpdJuEJoxwaXWA2vpqmN8ib5v951y-r2xZe5HX4wNAaJNm9IzpaSs_yJkpd8-0Oe0ybHerqqOrlpez6nqcKtMfV7J1vVT9iPkl56S_i2O_pyf3v-N47bir1uci_nn_sfFXwElkogd</recordid><startdate>20231120</startdate><enddate>20231120</enddate><creator>Wurm, Lennard M</creator><creator>Fischer, Björn</creator><creator>Neuschmelting, Volker</creator><creator>Reinecke, David</creator><creator>Fischer, Igor</creator><creator>Croner, Roland S</creator><creator>Goldbrunner, Roland</creator><creator>Hacker, Michael C</creator><creator>Dyba, Jakub</creator><creator>Kahlert, Ulf D</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2202-5068</orcidid><orcidid>https://orcid.org/0000-0002-6021-1841</orcidid><orcidid>https://orcid.org/0000-0002-3298-9517</orcidid><orcidid>https://orcid.org/0009-0009-2111-4780</orcidid></search><sort><creationdate>20231120</creationdate><title>Rapid, label-free classification of glioblastoma differentiation status combining confocal Raman spectroscopy and machine learning</title><author>Wurm, Lennard M ; Fischer, Björn ; Neuschmelting, Volker ; Reinecke, David ; Fischer, Igor ; Croner, Roland S ; Goldbrunner, Roland ; Hacker, Michael C ; Dyba, Jakub ; Kahlert, Ulf D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-842b3c90d088fb258287e43ca5685a2314ef95442b668bfd5b22536bbd2417923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Heterogeneity</topic><topic>Labels</topic><topic>Lipids</topic><topic>Machine learning</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stem cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wurm, Lennard M</creatorcontrib><creatorcontrib>Fischer, Björn</creatorcontrib><creatorcontrib>Neuschmelting, Volker</creatorcontrib><creatorcontrib>Reinecke, David</creatorcontrib><creatorcontrib>Fischer, Igor</creatorcontrib><creatorcontrib>Croner, Roland S</creatorcontrib><creatorcontrib>Goldbrunner, Roland</creatorcontrib><creatorcontrib>Hacker, Michael C</creatorcontrib><creatorcontrib>Dyba, Jakub</creatorcontrib><creatorcontrib>Kahlert, Ulf D</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wurm, Lennard M</au><au>Fischer, Björn</au><au>Neuschmelting, Volker</au><au>Reinecke, David</au><au>Fischer, Igor</au><au>Croner, Roland S</au><au>Goldbrunner, Roland</au><au>Hacker, Michael C</au><au>Dyba, Jakub</au><au>Kahlert, Ulf D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid, label-free classification of glioblastoma differentiation status combining confocal Raman spectroscopy and machine learning</atitle><jtitle>Analyst (London)</jtitle><date>2023-11-20</date><risdate>2023</risdate><volume>148</volume><issue>23</issue><spage>619</spage><epage>6119</epage><pages>619-6119</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><abstract>Label-free identification of tumor cells using spectroscopic assays has emerged as a technological innovation with a proven ability for rapid implementation in clinical care. Machine learning facilitates the optimization of processing and interpretation of extensive data, such as various spectroscopy data obtained from surgical samples. The here-described preclinical work investigates the potential of machine learning algorithms combining confocal Raman spectroscopy to distinguish non-differentiated glioblastoma cells and their respective isogenic differentiated phenotype by means of confocal ultra-rapid measurements. For this purpose, we measured and correlated modalities of 1146 intracellular single-point measurements and sustainingly clustered cell components to predict tumor stem cell existence. By further narrowing a few selected peaks, we found indicative evidence that using our computational imaging technology is a powerful approach to detect tumor stem cells in vitro with an accuracy of 91.7% in distinct cell compartments, mainly because of greater lipid content and putative different protein structures. We also demonstrate that the presented technology can overcome intra- and intertumoral cellular heterogeneity of our disease models, verifying the elevated physiological relevance of our applied disease modeling technology despite intracellular noise limitations for future translational evaluation. Multifactor classification of tumor stem cells and their differentiated counterparts by label-free diagnostics.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3an01303k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2202-5068</orcidid><orcidid>https://orcid.org/0000-0002-6021-1841</orcidid><orcidid>https://orcid.org/0000-0002-3298-9517</orcidid><orcidid>https://orcid.org/0009-0009-2111-4780</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2654
ispartof Analyst (London), 2023-11, Vol.148 (23), p.619-6119
issn 0003-2654
1364-5528
language eng
recordid cdi_proquest_miscellaneous_2886600156
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Algorithms
Heterogeneity
Labels
Lipids
Machine learning
Raman spectroscopy
Spectrum analysis
Stem cells
Tumors
title Rapid, label-free classification of glioblastoma differentiation status combining confocal Raman spectroscopy and machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid,%20label-free%20classification%20of%20glioblastoma%20differentiation%20status%20combining%20confocal%20Raman%20spectroscopy%20and%20machine%20learning&rft.jtitle=Analyst%20(London)&rft.au=Wurm,%20Lennard%20M&rft.date=2023-11-20&rft.volume=148&rft.issue=23&rft.spage=619&rft.epage=6119&rft.pages=619-6119&rft.issn=0003-2654&rft.eissn=1364-5528&rft_id=info:doi/10.1039/d3an01303k&rft_dat=%3Cproquest_rsc_p%3E2891743442%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-842b3c90d088fb258287e43ca5685a2314ef95442b668bfd5b22536bbd2417923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2891743442&rft_id=info:pmid/&rfr_iscdi=true