Loading…
Rapid, label-free classification of glioblastoma differentiation status combining confocal Raman spectroscopy and machine learning
Label-free identification of tumor cells using spectroscopic assays has emerged as a technological innovation with a proven ability for rapid implementation in clinical care. Machine learning facilitates the optimization of processing and interpretation of extensive data, such as various spectroscop...
Saved in:
Published in: | Analyst (London) 2023-11, Vol.148 (23), p.619-6119 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-842b3c90d088fb258287e43ca5685a2314ef95442b668bfd5b22536bbd2417923 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-842b3c90d088fb258287e43ca5685a2314ef95442b668bfd5b22536bbd2417923 |
container_end_page | 6119 |
container_issue | 23 |
container_start_page | 619 |
container_title | Analyst (London) |
container_volume | 148 |
creator | Wurm, Lennard M Fischer, Björn Neuschmelting, Volker Reinecke, David Fischer, Igor Croner, Roland S Goldbrunner, Roland Hacker, Michael C Dyba, Jakub Kahlert, Ulf D |
description | Label-free identification of tumor cells using spectroscopic assays has emerged as a technological innovation with a proven ability for rapid implementation in clinical care. Machine learning facilitates the optimization of processing and interpretation of extensive data, such as various spectroscopy data obtained from surgical samples. The here-described preclinical work investigates the potential of machine learning algorithms combining confocal Raman spectroscopy to distinguish non-differentiated glioblastoma cells and their respective isogenic differentiated phenotype by means of confocal ultra-rapid measurements. For this purpose, we measured and correlated modalities of 1146 intracellular single-point measurements and sustainingly clustered cell components to predict tumor stem cell existence. By further narrowing a few selected peaks, we found indicative evidence that using our computational imaging technology is a powerful approach to detect tumor stem cells
in vitro
with an accuracy of 91.7% in distinct cell compartments, mainly because of greater lipid content and putative different protein structures. We also demonstrate that the presented technology can overcome intra- and intertumoral cellular heterogeneity of our disease models, verifying the elevated physiological relevance of our applied disease modeling technology despite intracellular noise limitations for future translational evaluation.
Multifactor classification of tumor stem cells and their differentiated counterparts by label-free diagnostics. |
doi_str_mv | 10.1039/d3an01303k |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2886600156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891743442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-842b3c90d088fb258287e43ca5685a2314ef95442b668bfd5b22536bbd2417923</originalsourceid><addsrcrecordid>eNpd0ctLHDEcB_BQFLpdvXgvBHop4mgek2zmKL5RLCx6Hn7JJDY2k0yT2YPX_uXGrrTgKY_fJ88vQgeUHFPCu5OBQySUE_7rE1pQLttGCKZ20IIQwhsmRfsZfSnluQ4pEWSB_qxh8sMRDqBtaFy2FpsApXjnDcw-RZwcfgo-6To7pxHw4J2z2cbZb-tlhnlTsEmj9tHHp9qLLhkIeA0j1PpkzZxTMWl6wRAHPIL56aPFwUJ-W7CHdh2EYvff2yV6vLx4OLtu7n5c3Zyd3jWGCzI3qmWam44MRCmnmVBMrWzLDQipBDBOW-s60VYlpdJuEJoxwaXWA2vpqmN8ib5v951y-r2xZe5HX4wNAaJNm9IzpaSs_yJkpd8-0Oe0ybHerqqOrlpez6nqcKtMfV7J1vVT9iPkl56S_i2O_pyf3v-N47bir1uci_nn_sfFXwElkogd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891743442</pqid></control><display><type>article</type><title>Rapid, label-free classification of glioblastoma differentiation status combining confocal Raman spectroscopy and machine learning</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Wurm, Lennard M ; Fischer, Björn ; Neuschmelting, Volker ; Reinecke, David ; Fischer, Igor ; Croner, Roland S ; Goldbrunner, Roland ; Hacker, Michael C ; Dyba, Jakub ; Kahlert, Ulf D</creator><creatorcontrib>Wurm, Lennard M ; Fischer, Björn ; Neuschmelting, Volker ; Reinecke, David ; Fischer, Igor ; Croner, Roland S ; Goldbrunner, Roland ; Hacker, Michael C ; Dyba, Jakub ; Kahlert, Ulf D</creatorcontrib><description>Label-free identification of tumor cells using spectroscopic assays has emerged as a technological innovation with a proven ability for rapid implementation in clinical care. Machine learning facilitates the optimization of processing and interpretation of extensive data, such as various spectroscopy data obtained from surgical samples. The here-described preclinical work investigates the potential of machine learning algorithms combining confocal Raman spectroscopy to distinguish non-differentiated glioblastoma cells and their respective isogenic differentiated phenotype by means of confocal ultra-rapid measurements. For this purpose, we measured and correlated modalities of 1146 intracellular single-point measurements and sustainingly clustered cell components to predict tumor stem cell existence. By further narrowing a few selected peaks, we found indicative evidence that using our computational imaging technology is a powerful approach to detect tumor stem cells
in vitro
with an accuracy of 91.7% in distinct cell compartments, mainly because of greater lipid content and putative different protein structures. We also demonstrate that the presented technology can overcome intra- and intertumoral cellular heterogeneity of our disease models, verifying the elevated physiological relevance of our applied disease modeling technology despite intracellular noise limitations for future translational evaluation.
Multifactor classification of tumor stem cells and their differentiated counterparts by label-free diagnostics.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/d3an01303k</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Algorithms ; Heterogeneity ; Labels ; Lipids ; Machine learning ; Raman spectroscopy ; Spectrum analysis ; Stem cells ; Tumors</subject><ispartof>Analyst (London), 2023-11, Vol.148 (23), p.619-6119</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-842b3c90d088fb258287e43ca5685a2314ef95442b668bfd5b22536bbd2417923</citedby><cites>FETCH-LOGICAL-c350t-842b3c90d088fb258287e43ca5685a2314ef95442b668bfd5b22536bbd2417923</cites><orcidid>0000-0003-2202-5068 ; 0000-0002-6021-1841 ; 0000-0002-3298-9517 ; 0009-0009-2111-4780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wurm, Lennard M</creatorcontrib><creatorcontrib>Fischer, Björn</creatorcontrib><creatorcontrib>Neuschmelting, Volker</creatorcontrib><creatorcontrib>Reinecke, David</creatorcontrib><creatorcontrib>Fischer, Igor</creatorcontrib><creatorcontrib>Croner, Roland S</creatorcontrib><creatorcontrib>Goldbrunner, Roland</creatorcontrib><creatorcontrib>Hacker, Michael C</creatorcontrib><creatorcontrib>Dyba, Jakub</creatorcontrib><creatorcontrib>Kahlert, Ulf D</creatorcontrib><title>Rapid, label-free classification of glioblastoma differentiation status combining confocal Raman spectroscopy and machine learning</title><title>Analyst (London)</title><description>Label-free identification of tumor cells using spectroscopic assays has emerged as a technological innovation with a proven ability for rapid implementation in clinical care. Machine learning facilitates the optimization of processing and interpretation of extensive data, such as various spectroscopy data obtained from surgical samples. The here-described preclinical work investigates the potential of machine learning algorithms combining confocal Raman spectroscopy to distinguish non-differentiated glioblastoma cells and their respective isogenic differentiated phenotype by means of confocal ultra-rapid measurements. For this purpose, we measured and correlated modalities of 1146 intracellular single-point measurements and sustainingly clustered cell components to predict tumor stem cell existence. By further narrowing a few selected peaks, we found indicative evidence that using our computational imaging technology is a powerful approach to detect tumor stem cells
in vitro
with an accuracy of 91.7% in distinct cell compartments, mainly because of greater lipid content and putative different protein structures. We also demonstrate that the presented technology can overcome intra- and intertumoral cellular heterogeneity of our disease models, verifying the elevated physiological relevance of our applied disease modeling technology despite intracellular noise limitations for future translational evaluation.
Multifactor classification of tumor stem cells and their differentiated counterparts by label-free diagnostics.</description><subject>Algorithms</subject><subject>Heterogeneity</subject><subject>Labels</subject><subject>Lipids</subject><subject>Machine learning</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stem cells</subject><subject>Tumors</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0ctLHDEcB_BQFLpdvXgvBHop4mgek2zmKL5RLCx6Hn7JJDY2k0yT2YPX_uXGrrTgKY_fJ88vQgeUHFPCu5OBQySUE_7rE1pQLttGCKZ20IIQwhsmRfsZfSnluQ4pEWSB_qxh8sMRDqBtaFy2FpsApXjnDcw-RZwcfgo-6To7pxHw4J2z2cbZb-tlhnlTsEmj9tHHp9qLLhkIeA0j1PpkzZxTMWl6wRAHPIL56aPFwUJ-W7CHdh2EYvff2yV6vLx4OLtu7n5c3Zyd3jWGCzI3qmWam44MRCmnmVBMrWzLDQipBDBOW-s60VYlpdJuEJoxwaXWA2vpqmN8ib5v951y-r2xZe5HX4wNAaJNm9IzpaSs_yJkpd8-0Oe0ybHerqqOrlpez6nqcKtMfV7J1vVT9iPkl56S_i2O_pyf3v-N47bir1uci_nn_sfFXwElkogd</recordid><startdate>20231120</startdate><enddate>20231120</enddate><creator>Wurm, Lennard M</creator><creator>Fischer, Björn</creator><creator>Neuschmelting, Volker</creator><creator>Reinecke, David</creator><creator>Fischer, Igor</creator><creator>Croner, Roland S</creator><creator>Goldbrunner, Roland</creator><creator>Hacker, Michael C</creator><creator>Dyba, Jakub</creator><creator>Kahlert, Ulf D</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2202-5068</orcidid><orcidid>https://orcid.org/0000-0002-6021-1841</orcidid><orcidid>https://orcid.org/0000-0002-3298-9517</orcidid><orcidid>https://orcid.org/0009-0009-2111-4780</orcidid></search><sort><creationdate>20231120</creationdate><title>Rapid, label-free classification of glioblastoma differentiation status combining confocal Raman spectroscopy and machine learning</title><author>Wurm, Lennard M ; Fischer, Björn ; Neuschmelting, Volker ; Reinecke, David ; Fischer, Igor ; Croner, Roland S ; Goldbrunner, Roland ; Hacker, Michael C ; Dyba, Jakub ; Kahlert, Ulf D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-842b3c90d088fb258287e43ca5685a2314ef95442b668bfd5b22536bbd2417923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Heterogeneity</topic><topic>Labels</topic><topic>Lipids</topic><topic>Machine learning</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stem cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wurm, Lennard M</creatorcontrib><creatorcontrib>Fischer, Björn</creatorcontrib><creatorcontrib>Neuschmelting, Volker</creatorcontrib><creatorcontrib>Reinecke, David</creatorcontrib><creatorcontrib>Fischer, Igor</creatorcontrib><creatorcontrib>Croner, Roland S</creatorcontrib><creatorcontrib>Goldbrunner, Roland</creatorcontrib><creatorcontrib>Hacker, Michael C</creatorcontrib><creatorcontrib>Dyba, Jakub</creatorcontrib><creatorcontrib>Kahlert, Ulf D</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wurm, Lennard M</au><au>Fischer, Björn</au><au>Neuschmelting, Volker</au><au>Reinecke, David</au><au>Fischer, Igor</au><au>Croner, Roland S</au><au>Goldbrunner, Roland</au><au>Hacker, Michael C</au><au>Dyba, Jakub</au><au>Kahlert, Ulf D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid, label-free classification of glioblastoma differentiation status combining confocal Raman spectroscopy and machine learning</atitle><jtitle>Analyst (London)</jtitle><date>2023-11-20</date><risdate>2023</risdate><volume>148</volume><issue>23</issue><spage>619</spage><epage>6119</epage><pages>619-6119</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><abstract>Label-free identification of tumor cells using spectroscopic assays has emerged as a technological innovation with a proven ability for rapid implementation in clinical care. Machine learning facilitates the optimization of processing and interpretation of extensive data, such as various spectroscopy data obtained from surgical samples. The here-described preclinical work investigates the potential of machine learning algorithms combining confocal Raman spectroscopy to distinguish non-differentiated glioblastoma cells and their respective isogenic differentiated phenotype by means of confocal ultra-rapid measurements. For this purpose, we measured and correlated modalities of 1146 intracellular single-point measurements and sustainingly clustered cell components to predict tumor stem cell existence. By further narrowing a few selected peaks, we found indicative evidence that using our computational imaging technology is a powerful approach to detect tumor stem cells
in vitro
with an accuracy of 91.7% in distinct cell compartments, mainly because of greater lipid content and putative different protein structures. We also demonstrate that the presented technology can overcome intra- and intertumoral cellular heterogeneity of our disease models, verifying the elevated physiological relevance of our applied disease modeling technology despite intracellular noise limitations for future translational evaluation.
Multifactor classification of tumor stem cells and their differentiated counterparts by label-free diagnostics.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3an01303k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2202-5068</orcidid><orcidid>https://orcid.org/0000-0002-6021-1841</orcidid><orcidid>https://orcid.org/0000-0002-3298-9517</orcidid><orcidid>https://orcid.org/0009-0009-2111-4780</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2654 |
ispartof | Analyst (London), 2023-11, Vol.148 (23), p.619-6119 |
issn | 0003-2654 1364-5528 |
language | eng |
recordid | cdi_proquest_miscellaneous_2886600156 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Algorithms Heterogeneity Labels Lipids Machine learning Raman spectroscopy Spectrum analysis Stem cells Tumors |
title | Rapid, label-free classification of glioblastoma differentiation status combining confocal Raman spectroscopy and machine learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid,%20label-free%20classification%20of%20glioblastoma%20differentiation%20status%20combining%20confocal%20Raman%20spectroscopy%20and%20machine%20learning&rft.jtitle=Analyst%20(London)&rft.au=Wurm,%20Lennard%20M&rft.date=2023-11-20&rft.volume=148&rft.issue=23&rft.spage=619&rft.epage=6119&rft.pages=619-6119&rft.issn=0003-2654&rft.eissn=1364-5528&rft_id=info:doi/10.1039/d3an01303k&rft_dat=%3Cproquest_rsc_p%3E2891743442%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-842b3c90d088fb258287e43ca5685a2314ef95442b668bfd5b22536bbd2417923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2891743442&rft_id=info:pmid/&rfr_iscdi=true |